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ABSTRACT

A combination of analytical calculations and laboratory experiments has been used to investigate the

geostrophic adjustment of two buoyant fluids having different densities in a third denser ambient fluid. The

frontal position, the depth profile, and the horizontal and vertical alignments of the two buoyant fluids at

the final equilibrium state are determined by the ratio of the baroclinic Rossby radii of deformation G15 l31/l21
and G2 5 l32/l21 and the Burger numbers B1 5 l31/L1 and B2 5 l32/L2 of the two buoyant fluids, where

lij 5 (
ffiffiffiffiffiffiffiffiffiffi
g9ijHj

p
/f ) is the baroclinic Rossby radius of deformation between fluids i and j. The buoyant fluids 1 and

2 have densities r1 and r2 (r1 , r2), respectively; the ambient denser fluid has density r3; g9 is the reduced

gravity;H and L are the buoyant fluids’ initial depth and width, respectively; and f is the Coriolis parameter.

Laboratory rotating experiments confirmed the analytical prediction of the location of the two fronts. After

reaching geostrophic equilibrium, the two buoyant currents align mainly horizontally when the extent of the

fronts between fluids 1 and 3 and between fluids 2 and 3 is large compared to the extent of the front between

fluids 1 and 2: that is, large values of l31 and l32 compared to l21 or equivalently G1 � 1 and G2 � 1.

Alternatively, if the extent of the fronts between the three fluids is similar (i.e., G1 ’ G2 ’ 1), the buoyant

currents align mainly vertically. Furthermore, the Burger number of the lightest fluidB1 controls the distance

of the inner front from the coast, while B2 controls the offshore extent of the outer front.

1. Introduction

Buoyant coastal currents are often composed of sev-

eral plumes emanating from spatially separated rivers.

Examples include the Western Maine Coastal Current

(WMCC), which receives its buoyant waters principally

from the Kennebec and Penobscot Rivers (Franks and

Anderson 1992; Geyer et al. 2004; Churchill et al. 2005);

the western Adriatic coastal current, which is driven by

the Po River and a series of smaller rivers draining the

Apennine mountains in eastern Italy (Raicich 1996;

Artegiani et al. 1997); and the Alaska Coastal Current,

which receives its freshwater from many small streams

draining the Alaskan coastal mountain ranges (Royer

1982, 1998; Stabeno et al. 2004).

The dynamics of buoyant coastal currents have been

studied extensively in the past (e.g., O’Donnell 1990;

Yankovsky and Chapman 1997; Garvine 2001; Fong and

Geyer 2002; Garcia Berdeal et al. 2002; Hetland 2005).

In particular, laboratory experiments have brought nu-

merous insights on the scales adopted by these flows and

their dynamics and stability (Griffiths and Linden 1981a;

Lentz and Helfrich 2002). However, the study of how

two or more buoyant currents interact and how the

water masses of individual currents align relative to each

other vertically and horizontally has received little sci-

entific attention. Yet, the problem of multiplume in-

teractions is a scientifically interesting problem with

societal and ecological significance (e.g., relating to the

fate of pollutants, harmful algal blooms, larval dispersal,

and population connectivity).
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Buoyancy-driven currents occur when a fluid is released

into an ambient fluid of different density: for example,

a river flowing into the open ocean. If the fluid is lighter, it

will flow above the ambient fluid as what we will herein

refer to as a buoyant current. The outer edges of these

currents are bounded by fronts. In the presence of rotation,

the horizontal spreading of these buoyancy-driven currents

is restrained by the Coriolis force. In the presence of ver-

tical walls (i.e., a coastline), the condition of no flownormal

to the wall implies that there is no Coriolis force parallel to

the wall. Motion can occur parallel to the wall accompa-

nied by aCoriolis force directed normal to thewall. Hence,

the resulting current hugs the wall with the wall on its right

looking downstream (in the Northern Hemisphere). We

will refer to these currents as buoyant coastal currents.

A buoyant coastal current can flow along a sloping

wall in one of two forms: (i) a surface-trapped current or

(ii) a slope-controlled current. A surface-trapped cur-

rent forms a shallow layer that intersects the bottom

slope close to the free surface intersection of the current

with the slope, herein called shore, and bottom topog-

raphy has virtually no effect on its dynamics. Numerous

studies have examined the behavior (formation, propa-

gation, stability, etc.) of a surface-trapped current along

a vertical wall (over a flat bottom) in various configu-

rations (e.g., Griffiths and Hopfinger 1983; Griffiths and

Linden 1981a, 1982; Chabert d’Hieres et al. 1991;

Garvine 1999; Fong and Geyer 2002; Geyer et al. 2004).

A slope-controlled current is fundamentally different,

because bottom topography plays a leading dynamical

role (Chapman and Lentz 1994; Yankovsky and Chapman

1997; Lentz and Helfrich 2002). In this study, we will

limit our investigation to surface-trapped currents.

The goal of this study is to use a combination of ana-

lytical calculations and laboratory experiments to in-

vestigate the relative vertical and horizontal alignment of

two buoyant fluids of different densities after they reach

a geostrophic equilibrium. The analytical calculations

show how different horizontal and vertical alignment

scenarios are obtained by varying the densities and vol-

ume transports of the two buoyant coastal currents. These

different scenarios are presented as a function of the dy-

namically relevant nondimensional numbers. Laboratory

rotating experiments confirm the analytical prediction of

the depth profile and location of the two buoyant currents.

The paper is organized as follows: The geostrophic

adjustment model is discussed in section 2. The model

results are illustrated in section 3. The laboratory exper-

imental apparatus and measurement techniques are de-

scribed in section 4. A typical experiment is described in

section 5 together with the frontal positionmeasurements

and the comparison with the model prediction. The con-

clusions of this work are discussed in section 6.

2. The model

An idealized, linearized model has been developed to

investigate the relative vertical and horizontal alignments

of two surface-trapped buoyant coastal currents after they

reach geostrophic equilibrium. Geostrophic adjustment

models (Rossby 1938; Gill 1982) have been used by var-

ious investigators to study the structure of steady flows in

the vicinity of fluids with contrasting densities (Csanady

1971; Hsueh and Cushman-Roisin 1983). For example,

Csanady (1979) and Griffiths and Linden (1981b)

describe the geostrophic adjustment of an axisymmetric

vortex in an ambient fluid of contrasting density and

infinite depth, while Griffiths and Linden (1982) describe

the geostrophic adjustment of an idealized density-driven

boundary current. Ou (1983) applied a geostrophic

adjustment model to describe the frontal structure and

velocity distribution of an idealized shelf-slope front.

Ou (1984) studied the geostrophic adjustment of a two-

dimensional fluid initially at rest, but with a continuous

lateral density gradient in order to demonstrate a mech-

anism for frontogenesis. As a final example, van Heijst

(1985) considered the geostrophic adjustment of three

fluidswith contrasting density to study the structure of the

density field and circulation in the vicinity of an idealized

tidal mixing front. To the authors’ knowledge, the van

Heijst (1985) model is the only other application of

a geostrophic adjustment model to three fluids. However,

it considers a very different geometry and initial condi-

tions from the model presented in this study. Our appli-

cation of a three-fluid geostrophic adjustment model to

two adjacent coastal currents is unique, it provides a base

state for a complete stability analysis, and it is an

interesting geophysical problem that sheds some insight

on how buoyant coastal currents interact in the environ-

ment. Given the large number of dimensional and non-

dimensional parameters contained in the model (see

below), the horizontal and vertical alignment of the two

buoyant currents as these parameters vary is nonintuitive.

The model considered here consists of three homo-

geneous, incompressible, and immiscible fluids denoted

by 1, 2, and 3 of densities r1 , r2 , r3, respectively,

whose initial state is as shown in Fig. 1a. A solid vertical

wall representing the coastline is indicated by the thick

solid line. Two vertical barriers (dashed lines) separate

the three fluids. The system is rotating with angular ve-

locity f/2, where f is the Coriolis parameter. A Cartesian

coordinate system (x, y, z) is introduced with x and y

directed parallel and orthogonal to the vertical wall,

respectively, and z directed upward from the free sur-

face. We assume there are no variations in the direction

along the wall (x direction). The vertical wall position

is y 5 0 and the two barriers are located at y 5 L1 and
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y5L11L2. The initial depth of fluid 1 (fluid 2) isH1 (H2),

while the ambient fluid 3 is considered to be infinitely

deep and at rest.

When the barriers are removed, fluid 1 (fluid 2) tends

to intrude into fluid 2 (fluid 3) until a state of equilibrium

is reached. Assuming that the adjustment process is in-

viscid and in the absence of mixing, potential vorticity in

each individual fluid layer will be conserved. In the final,

adjusted state, the resulting flow is assumed to be in

geostrophic balance and directed along the wall, as in-

dicated by the final adjusted state of the interfaces be-

tween the fluids schematically shown in Fig. 1b.

With the above assumptions, it is possible to derive a set

of coupled hyperbolic equations with general solutions

for the equilibrium depths of fluids 1 and 2, h1(y) and

h2(y), respectively, as well as for the cross-shore structure

of the along-wall velocity ui in each of the buoyant cur-

rents in the regions 0# y# l1, l1, y, l2, and l2# y# l3,

where l1 is the position of fluid 2 subsurface front and l2(l3)

the position of the fluid 1 (fluid 2) surface front (Fig. 1b).

We will focus on cases in which l1 $ 0 and l3 $ l2.

Conservation of potential vorticity in fluids 1 and 2

requires

f 2
›u1
›y

h1
5

f

H1

and (1a)

f 2
›u2
›y

h2
5

f

H2

. (1b)

In the adjusted state, the along-wall flow in each fluid

is in geostrophic balance, giving

u1 52
g931
f

›h1
›y

for 0# y# l1, (2a)

u152
1

f

�
g931

›h1
›y

1 g932
›h2
›y

�
for l1, y, l2, (2b)

u2 52
1

f

�
g932

›h1
›y

1 g932
›h2
›y

�
for l1, y, l2, and

(2c)

u252
g932
f

›h2
›y

for l2# y# l3 , (2d)

where g9ij 5 g[(ri 2 rj)/r0] is the reduced gravity between

fluids i and j, and r0 is a reference density. Equations

(2a)–(2d) are derived under the assumption that the

density differences are small enough in order to take the

ratios r1/r2, r1/r3, and r2/r3 ’ 1.

In the adjusted state, the region 0 # y # l1 is charac-

terized by a two-layer stratification of densities r1 and

r3. An equation for the upper-layer depth h1 can be

obtained by combination of (1a)–(2a), yielding

›2h1
›y2

2
1

l231
h152

H1

l231
, (3)

where lij 5
ffiffiffiffiffiffiffiffiffiffi
g9ijHj

p
/f is the baroclinic Rossby radius of

deformation between fluids i and j. The general solution

is

h15Eey/l31 1Fe2y/l
31 1H1, (4)

where E and F are unknown constants of integration.

FIG. 1. Geometry of the model for the geostrophic adjustment of two buoyant fluids. (a) Sketch of the initial state

(t5 0) with the two barriers (dashed lines) separating three fluids. (b) Sketch of the adjusted equilibrium state (t5 teq)

inwhich the two buoyant currents are in geostrophic balance.Dotted lines indicate the position of the two surface fronts

(y 5 l2 and y 5 l3) and one subsurface front (y 5 l1). Not to scale.
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A three-layer stratification is present in the region

l1 , y , l2. As before, using Eqs. (1a), (1b), (2b), and

(2c) one can derive the equations for the upper- (h1; i.e.,

fluid 1) and middle- (h2; i.e., fluid 2) layer depths,

›4h1
›y4

2

 
l232 1 l231
l221l

2
32

!
›2h1
›y2

1
1

l221l
2
32

h151
H1

l221l
2
32

and

(5a)

h25
H2

H1

 
2l221

›2h1
›y2

1h12H1

r22 r1
r1

!
. (5b)

The general solutions are

h15Ae
ffiffiffiffi
a
1

p
y1Be2

ffiffiffiffi
a
1

p
y1Ce

ffiffiffiffi
a
2

p
y1De2

ffiffiffiffi
a
2

p
y 1H1 and

(6a)

h25
H2

H1

[(Ae
ffiffiffiffi
a
1

p
y 1Be2

ffiffiffiffi
a
1

p
y)(12a1l

2
21)

1 (Ce
ffiffiffiffi
a
2

p
y1De2

ffiffiffiffi
a
2

p
y)(12a2l

2
21)1H1] , (6b)

respectively, where A, B, C, and D are unknown con-

stants of integration and

a15
1

2

 
l232 1 l231
l221l

2
32

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l432 2 l431 1 2l232l

2
31 2 4l221l

2
32

l221l
2
32

s !

and (7a)

a25
1

2

 
l232 1 l231
l221l

2
32

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l4322 l431 1 2l232l

2
312 4l221l

2
32

l221l
2
32

s !
.

(7b)

For the two-layer region l2 # y # l3, an equation for h2
can be derived in a similar way, yielding

›2h2
›y2

2
1

l232
h252

H2

l232
, (8)

with general solution

h25Gey/l32 1Ke2y/l
32 1H2 , (9)

where G and K are unknown constants of integration.

The various unknown constants of integration A–G

and K are determined by matching the solutions across

the boundaries y 5 l1 and y 5 l2 and by applying con-

ditions following frommass conservation and geometry.

Because the unknowns l1, l2, and l3 also appear in the

boundary conditions, 11 conditions are required in order

to determine all the unknowns in the problem. These

boundary conditions are as follows:

1) The velocity at the wall (i.e., y 5 0) is equal to

a constant u0 (u0 5 0 in the absence of background

flow).

2) The layer thickness h1 is continuous across y 5 l1.

3) The velocity u1 is continuous across y 5 l1.

4) The layer thickness h1 vanishes at the surface front

y 5 l2.

5) The layer thickness h2 vanishes at the surface front

y 5 l3.

6) The layer thickness h2 vanishes at the subsurface

front y 5 l1.

7) The layer thickness h2 is continuous across y 5 l2.

8) The velocity u2 is continuous across y 5 l2.

9) The velocity u2 at y 5 l1 can be obtained by in-

tegrating the x-momentum equation ›u2/›t2 f y5 0

in time from t 5 0 to t 5 teq, where teq is the time at

which the final adjusted equilibrium state is reached

and for which the boundary conditions are sought.

Knowing that at t5 0 the velocity u25 0, the velocity

u2 at t 5 teq is u2 5 f [y(t 5 teq) 2 y(t 5 0)]. Since

we are interested in the velocity u2 at y5 l1, we have

that y(t 5 teq) 5 l1 and y(t 5 0) 5 L1; hence, u2 5
f(l1 2 L1).

10) Conservation of mass of fluid 1 requires

H1L1 5
Ð l2
0 h1(y) dy.

11) Conservation of mass of fluid 2 requires

H2L2 5
Ð l3
l1
h2(y) dy.

These conditions yield a set of equations of varying

complexity in the unknowns A–G, K, l1, l2, and l3, for

which, due to nonlinearity, no analytical solutions could

be obtained. Hence, the system was solved using

a standard numerical Matlab routine.

3. Model results

Solutions to the equations obtained in section 2 have

been calculated for different values of the fluids’ baro-

clinic Rossby radii of deformation and Burger numbers.

The depth profile of the two buoyant fluids are shown in

Fig. 2, where two different scenarios are plotted. As

suggested by the equations in section 2, the different

vertical and horizontal alignments of the two buoyant

fluids, after they reach the geostrophic equilibrium, de-

pend on the two ratios of the three baroclinicRossby radii

of deformation, G1 5 l31/l21 and G2 5 l32/l21. The

baroclinic Rossby radius represents a length scale of the

width of the front between the different fluids. For

simplicity, we define the width of the front between

fluids 1 (2) and 3 asW1 5 l2 (W2 5 l3 2 l1) and the width

of the front between fluids 1 and 2 (i.e., the extent over

which the two buoyant currents overlap) asW125 l22 l1
(Fig. 1b). Note that W1 (W2) is not an accurate measure
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of the width of the front between fluids 1 (2) and 3 for

cases with a significant overlap between fluids 1 and 2.

WhenW1�W12 andW2�W12 (i.e., large values of l31
andl32 compared tol21 or equivalentlyG1� 1 andG2� 1),

one expects the two buoyant fluids to have little vertical

overlap, relative to the width of the buoyant currents,

and present a horizontal alignment (Fig. 2b). Alterna-

tively, if the width of the fronts between the three fluids

is similar (i.e., G1 ’ G2 ’ 1), one expects that the two

buoyant currents will mainly overlap and present a ver-

tical alignment (Fig. 2a). Hence, with increasing values

of G1 and G2 and fixed values of the Burger numbers, the

alignment of the two buoyant coastal currents will shift

from a scenario in which the two currents are mainly

vertically aligned [i.e., W12/W1 ’ O(1) and W12/W2 ’
O(1)] to a scenario in which the alignment is mainly

horizontal (i.e., W12/W1 � 1 and W12/W2 � 1; Fig. 3).

The dependence of the parameters W12/W1 and W12/

W2 on G1 and G2 shown in Fig. 3 was obtained by keeping

the densities r1 and r3 constant and equal to 0.9987 and

1.0222, respectively, and by varying the density r2 in

order to change the magnitude of G1 and G2. This ap-

proach is identical to the one used in the laboratory

experiments (Table 1). Furthermore, the value of H1 5
H2 5 2.5 cm and the Burger numbers B1 5 l31/L1 and

B2 5 l32/L2 were constant and equal to 1.0. The values

of L1 and L2 were dictated by the values of the Burger

numbers and the Rossby radii of deformations. It is

important to notice that G1 and G2 are not independent

parameters: an increase in G1 determines an increase in

G2, as also shown in Table 1. The choice of keeping

H1 5 H2 5 2.5 cm, keeping r1 and r3 fixed, and varying

r2 is a specific choice we made (others are possible) in

order to investigate the parameter space in Fig. 3. Fig-

ure 3 shows that for G1 ’ G2 ’ 1 the value of W12/W2 is

a few times larger than W12/W1. The O(1) values of Gi

are obtained by a large value of r2. Consequently, the

small value of l32 requires a small value ofL2 in order to

have a constantB2. Small values ofL2 limit the extent of

the outer front (i.e., W2) and cause the large values of

W12/W2 shown in Fig. 3.

The Burger numbers of the two buoyant fluids control

the position of the two buoyant coastal current fronts

relative to the coastal wall. In particular, the Burger

number of the lightest fluidB1 controls the distance of the

inner front from the coastal wall, as shown in Fig. 4. By

‘‘inner’’ front, we refer to the front between fluids 1 and 2

and between fluids 1 and 3 (dashed line in Fig. 2). By

‘‘outer’’ front, we refer to the front between fluids 2 and 3

(solid line in Fig. 2). For increasing values of B1 and

constant values ofG1 andG2, the inner frontmoves toward

the coastal wall, as indicated by the change in location of

y5 l1 (solid line in Fig. 5a). A change inB1, while keeping

constant the other nondimensional parameters, leaves the

values of W12 and W2 unaltered (Figs. 4a–c, 5a). The

width and therefore the offshore extent of the outer front

is controlled by B2. For increasing values of B2, while

keeping constant the other nondimensional parameters,

FIG. 2. Depth profile of two buoyant coastal currents after the

geostrophic adjustment takes place. The dashed (solid) line in-

dicates the model prediction of the depth h1(y) [h2(y)]. The coastal

vertical wall is located at y5 0 cm. Both fluid 1 and fluid 2 flow out

of the page. Values are (a) G15 1.3, G25 0.8,B15 0.9, andB25 0.6

and (b) G1 5 4.5, G2 5 4.5, B1 5 0.9, and B2 5 0.9. Note that lab-

oratory parameters have been used in the model calculations.

Hence, the dimensions are in centimeters on the axes.

FIG. 3. Dependence of parametersW12/W1 andW12/W2 onG1 and

G2 forB15B25 1.0 andH15H25 2.5 cm. For G1’G2’ 1 the two

buoyant coastal currents will mainly overlap [i.e., W12/W1 ; W12/

W2 ;O(1)] and present a vertical alignment. For G1 � 1 and G2 �
1, the two buoyant coastal currents have little vertical overlap

relative to the width of the buoyant currents (i.e.,W12/W1 � 1 and

W12/W2 � 1) and present a horizontal alignment. The parameter

space shown in this figure is obtained by keeping the densities r1
and r3 constant and equal to 0.9987 and 1.0222, respectively, and by

varying the density r2.
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the outer front moves toward the coastline (thick lines in

Fig. 5b). A change in B2 influences neither W12 nor the

location of y 5 l1; hence, the position of the inner front

remains almost unchanged (Figs. 4d–f, 5b).

The two extreme scenarios illustrated in Fig. 2 present

Burger numbers O(1). The alignment of the two buoy-

ant coastal currents for the same values of G1 and G2 are

slightly modified when considering Burger numbers that

are notO(1) (Fig. 6). In particular, if G1’ G2’ 1 and B1

andB2 areO(1), the alignment between the two buoyant

coastal currents is vertical (Fig. 6a), but for B1 � 1 and

B2 � 1 (Fig. 6b) the alignment becomes horizontal in

that the width of the front between fluids 1 and 2 W12 is

now small compared to W1 and W2 because of the large

TABLE 1. Values of the parameters used in the experiments. Units are in centimeter–gram–second (CGS) system. From the definition in

section 2,L15R1 andL25R22R1. TheCoriolis parameter is fixed at f5 2 s21 and themaximumdepth of the densest water in the tank is

kept constant at H 5 25 cm.

Expt No. r1 r2 r3 H1 5 H2 L1 L2 G1 G2 B1 B2

1 0.9987 1.0150 1.0222 3.5 8 8 1.2 0.7 0.56 0.31

2 0.9987 1.0150 1.0222 2.5 12 4 1.2 0.7 0.32 0.52

3 0.9987 1.0150 1.0222 2.5 6 10 1.2 0.7 0.63 0.21

4 0.9987 1.0100 1.0222 2.5 8 8 1.4 1.0 0.47 0.34

5 0.9987 1.0100 1.0222 2.5 12 4 1.4 1.0 0.32 0.68

6 0.9987 1.0100 1.0222 2.5 6 10 1.4 1.0 0.63 0.27

7 0.9987 1.0050 1.0222 2.0 8 8 1.9 1.6 0.42 0.36

8 0.9987 1.0050 1.0222 2.5 12 4 1.9 1.6 0.32 0.81

9 0.9987 1.0050 1.0222 2.0 6 10 1.9 1.6 0.57 0.29

FIG. 4. Depth profile of two buoyant coastal currents for different values of Burger numbers and fixed values of

G15 1.3 and G25 0.8. The lines in the figure have the samemeaning as in Fig. 2. The dashed–dotted line indicates the

position of y5 l1 for B1 5 0.9 and B2 5 0.6. Values are (a) B1 5 0.9 and B2 5 0.6; (b) B15 0.5 and B2 5 0.6; (c) B1 5
2.5 and B2 5 0.6; (d) B1 5 0.9 and B2 5 0.6; (e) B1 5 0.9 and B2 5 0.3; and (f) B1 5 0.9 and B2 5 1.4.
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amount of fluids 1 and 2 present. For the case in which

G1� 1, G2� 1, and B1 and B2 areO(1), the alignment is

horizontal (Fig. 6c), but forB1� 1, andB2� 1 (Fig. 6d)

the alignment becomes vertical given the lack of fluids 1

and 2. Both the inner and outer fronts move closer to the

vertical wall and W12 is now comparable to W1 and W2.

In summary, the model of the geostrophic adjustment

of two buoyant fluids having different densities in a third

denser ambient fluid suggest that, after reaching a geo-

strophic equilibrium, for Burger numbers O(1) the two

buoyant currents alignmainly horizontally for G1� 1 and

G2 � 1 with very little vertical overlap. In the case in

which G1 ’ G2 ’ 1, the buoyant currents align mainly

vertically. Variation in the Burger number of the two

buoyant fluids will modify the position of the two buoyant

fronts relative to the coastal wall. Finally, intermediate

scenarios between the two extremes presented above can

occur. For example, for G1 � 1 and G2 ’ 1, horizontal

alignment between the two currents persists, but with

a significant overlap region (not shown).

4. Experimental apparatus

The experiments are conducted in a Plexiglas square

tank of depth 35 cm and length and width 60 cm. The

tank ismounted on a 1-m-diameter anticlockwise rotating

turntable with a vertical axis of rotation (Fig. 7). We use

a square tank to avoid optical distortion from side views

associated with a circular tank. The tank is filled to

a heightH with salted dense water of density r3, which is

initially in solid-body rotation. Two concentric bottomless

cylinders are centered on the axis of rotation and im-

mersed to the required depth in the ambient fluid of

density r3 to generate the barriers between the three

fluids. The cylinders are withdrawn vertically while the

table is rotating via a pulley system. Care is taken to

minimize any mixing between the three fluids. Two dyed

fluids of density r1 , r2 (,r3) are added inside the con-

centric cylinders until they form layers of depth H1 and

H2, respectively. Fluid of density r1 is added in the inner

cylinder of radius R1, while fluid of density r2 is added in

the outer cylinder of radius R2 (Fig. 7). The whole system

is left to reach a state of solid-body rotation before the

experiment begins with the vertical withdrawal of the

bottomless cylinders. The density difference between

the three fluids is produced by the addition of different

amounts of salt to the fluids.

The method described above to generate buoyant cur-

rents is referred to as ‘‘constant volume’’ since the amount

of buoyant fluid in the cylinders is fixed. A different

method to generate a buoyant current is the so-called

constant flux in which buoyant fluid is released at a fixed

rate by a source positioned near a vertical (or sloping)

wall. Griffiths and Linden (1981b) discuss in detail the

similarities and differences between these two different

methods of generating buoyant currents. Our choice of

constant volume experiments is mainly dictated by the

simplicity of the setup and the similarity of the initial

conditions to the analytical model presented in section 2.

FIG. 5. Dependence of parameters W12, l1, and W2 on the Burger

numbers (a) B1 5 l31/L1 and (b) B2 5 l32/L2. In (a), for increasing

values ofB1 the inner front (solid line) moves toward the coastal wall

(i.e., l1 decreases). A change in B1 leaves the values of W12 (dashed

line) andW2 (dotted line) unaltered. Squares represent the value of l1
for the laboratory experiments. The other nondimensional parame-

ters assume the following values: G1 5 1.4, G2 5 1.0, B2 5 0.4, and

H1 5H2 5 2.5 cm. In (b), for increasing values of B2 the outer front

moves toward the coastline (i.e., W2 decreases). Symbols represent

the value of W2 for the laboratory experiments. The dependence of

W2 onB2 is shown for three different values ofGi:G15 1.2 andG25 0.7

(thick dashed line and triangles), G1 5 1.4 and G2 5 1.0 (thick solid

line and squares), and G1 5 1.9 and G2 5 1.6 (thick dotted line and

circles). A change inB2 influences neitherW12 nor l1. In (b),B15 0.5

and H1 5 H2 5 2.5 cm. The parameter spaces shown in this figure

are obtained by keeping the densities r1 and r3 constant and equal to

0.9987 and 1.0222, respectively, and by varying the density r2.
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Furthermore, the circular geometry is chosen to remove

unwanted ‘‘end’’ effects.With thismethod,we avoid issues

related to the ‘‘nose’’ of the currents (i.e., the furthermost

along-wall location of the buoyant current where along-

wall horizontal gradients of density are very large and

where the buoyant currents ‘‘begin’’; see Simpson 1997)

and the formation of a ‘‘bulge’’ near the source (e.g.,

Garvine 2001; Nof 2005; Horner-Devine et al. 2006),

which occur when the constant flux method is used.

A camera positioned on one side of the tank acquires

a side view of the currents. To measure the depth profile

of the two buoyant currents, we dye the two fluids with

water-soluble fluorescent dyes: Sodic Fluorescein for the

fluid with density r1, and Rhodamine B for the fluid with

density r2. The vertical plane passing through the center

of the cylinders is illuminated with a 5-W light-emitting

diode (LED) having two different wavelengths, a cyan

light (emission peak at 505 nm) for the Fluorescein ex-

citation, and a green light (530 nm) for the excitation

of Rhodamine B. A 20-cm fiber-optic light guide, end-

ing with a rectangular light line, is used in order to

minimize the light lost and reduction of intensity with

distance. The illuminating system produces a divergent

light beam; hence, a convex cylindrical lens is located

between the tank and the light source in order to focus

the light into a thin sheet (width of about 0.3 cm) lying

FIG. 6. Depth profile of two buoyant coastal currents for different values of Burger numbers. (a),(c) As in Figs. 2a,

b, respectively. Values are (a) G15 1.3, G25 0.8,B15 0.9, andB25 0.6; (b) G15 1.3, G25 0.8,B15 0.3, andB25 0.2;

(c) G15 4.5,G25 4.5,B15 0.9, andB25 0.9; and (d)G15 4.5,G25 4.5,B15 5.0, andB25 5.0. Note the different axes’

size between (a) and (b) and between (c) and (d), necessary to clearly visualize both (b) and (d).

FIG. 7. Sketch of the experimental apparatus: (a) top view and (b) side view. The dashed line in (b) indicates the axis

of rotation, and V 5 f/2 s21 is the angular velocity of the rotating table. Not to scale.
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on the plane orthogonal to the flow direction and passing

through the center of the cylinders. Images of the depth

profile are calibrated and compared to the model pre-

diction (section 2).

A total of nine experiments are presented. The maxi-

mum depth of the densest water in the tank is kept con-

stant at H 5 25 cm, as well as the value of the Coriolis

parameter f 5 2 s21. The initial depths of the buoyant

fluids are the same (i.e.,H1 5H2) and ranged from 2.0 to

3.5 cm. The value of the densities and the cylinders’ radii

are varied in order to obtain different values of Gi and Bi

for i5 1, 2. In particular, the densities r1 and r3 are kept

constant and equal to 0.9987 and 1.0222, respectively, and

the density r2 is varied (Table 1). The buoyancy forces

are controlled by the reduced gravity g9ij between fluids

i and j, which assumed values g931 5 22:8 cms22,

6:9# g932 # 16:6 cm s22, and 6:1# g921 # 15:8 cm s22. Fi-

nally, the cylinders radii varied between 6 # R1 # 12 cm

while R2 5 16 cm was kept constant. The values of the

above parameters for each experiment are shown in Ta-

ble 1 together with the values of the relevant non-

dimensional parameters in the ranges 1.2 # G1 # 1.9,

0.7 # G2 # 1.6, 0.3 # B1 # 0.6, and 0.2 # B2 # 0.8.

5. The geostrophic adjustment

During each experiment, after the vertical withdrawal

of the bottomless cylinders, the two buoyant fluids

evolved until they reached geostrophic equilibrium.

Initially both fluids spread horizontally radially outward

from the axis of rotation. In the presence of rotation, the

horizontal spreading of these buoyant fluids is restrained

by the Coriolis force. A radial motion induces an azi-

muthal flow to conserve angular momentum, and this

flow, in turn, produces a radial Coriolis force that op-

poses the buoyancy force (i.e., geostrophic balance).

Consequently, further radial motion is inhibited and

closed streamlines develop (i.e., vortices). A geostrophic

balance is reached within a few inertial periods.

The axisymmetric geometry used in the laboratory is

equivalent to the geometry shown in Fig. 1a in which

a vertical wall is present. In the laboratory, the vertical

wall is represented by the vertical line passing through the

center of the tank (Griffiths and Linden 1981a,b). Fur-

thermore, the laboratory geometry assumes periodic

boundary conditions in the x direction (i.e., a fluid ele-

ment moves along closed streamlines). The two buoyant

currents are represented in the laboratory by two con-

centric vortices. In this study, we are interested in the final

horizontal and vertical alignment of the two buoyant

fluids, not in their downstream evolution, which cannot be

captured by these experiments. Hence, the model repre-

sents one-half of a vertical section of the vortices formed

in the laboratory, in which the coastline is the center of

the vortex. We do not expect the presence of a vertical

wall to modify the results presented below.

Once the two concentric vortices are in geostrophic

balance over a flat bottom, wavelike disturbances ap-

pear at the inner and outer fronts and they ultimately

grow to large amplitude (Cenedese and Linden 2002;

Griffiths and Linden 1981a,b). The laboratory results

suggest that the solutions found in section 2 should be

unstable to a combination of baroclinic/barotropic in-

stability (Griffiths and Linden 1981a,b) after a transient

state, which lasts a few inertial periods. The present study

focuses solely on the geostrophic adjustment of the two

buoyant fluids and a future contribution will discuss in

detail the stability of the two buoyant currents’ fronts.

After the two buoyant fluids reach the final adjusted

equilibrium state the buoyant currents present a depth

profile as shown in Figs. 8 and 9. The model prediction of

the depths h1(y) (dashed line) and h2(y) (solid line) are

superimposed on the images acquired during the labora-

tory experiments. To compare the model prediction and

the image from the laboratory experiments a calibration

of the imagewas conducted to convert pixels into distance

(cm). In the laboratory image the location y 5 l1 was

FIG. 8. Side view of the two buoyant currents after reaching the

geostrophic equilibrium. Values are (a) G15 1.2,G25 0.7,B15 0.56,

and B2 5 0.31; (b) G1 5 1.4, G2 5 1.0, B1 5 0.47, and B2 5 0.34; and

(c) G1 5 1.9, G2 5 1.6, B1 5 0.42, and B2 5 0.36. The dashed (solid)

line indicates the model prediction of the depth h1(y) [h2(y)]. The

dashed–dotted line indicates the position of y 5 l1 in (b).
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identified and used as the reference point to compare the

model to the laboratory results. The parabolic deflection

of the free surface due to the rotation of the system ob-

served in the laboratory experiments is small and it is

ignored in themodel formulation. The free surface height

difference between the center of rotation (y5 0 cm) and

a radius of approximately 22 cm is 0.06 cm.

Themodel does an excellent job in predicting the depth

of the two buoyant fluids after they reach a geostrophic

equilibrium. In particular, the laboratory experiments

confirm that for values of G1, and G2 on the order of unity

the alignment is mainly vertical (Fig. 8a), while for larger

values of these two nondimensional parameters the

alignment becomes horizontal (Fig. 8c). The width of the

front between fluids 1 and 2,W12, decreases for increasing

values of G1 and G2, while the location of y5 l1 is similar

since the three experiments in Fig. 8 have comparable

values of B1. The offshore extent of the outer front is

similar for these experiments given the similarity in B2.

For values of G1, and G2 on the order of unity, an in-

creasing value of the lightest fluid Burger number B1

moves the inner front closer to the coastline (Fig. 9),

while an increasing value of B2 produces a decrease of

W2. Hence, an increasing value of B1 together with

a decreasing value of B2 moves the inner front closer to

the coastline while leaving the offshore position of the

outer front mainly unmodified (Figs. 9a,b), while a de-

creasing value of B1 together with an increasing value of

B2 moves the inner front offshore while leaving the

offshore position of the outer front mainly unmodified

(Figs. 9b,c). Note how the width of the front between

fluids 1 and 2, W12, remains approximately constant in

Fig. 9, while W1 and W2 change due to the change in

Burger number of the two buoyant fluids.

The magnitude of the variables W12, W1, W2, and l1 is

measured for each laboratory experiment using images

like those presented in Figs. 8 and 9. The model pre-

diction of these variables is in very good agreement with

the laboratory measurements, as shown in Fig. 10. The

root-mean-square (rms) error between the laboratory

measurements and the model prediction is defined as

erms 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
M

i
(Fi

e 2Fi
m)

2

M

vuuut
, (10)

whereM is the number of experiments, F is the variable

of interest, and a superscript i denotes the ith experi-

ment. As indicated in Fig. 10, l1 has the smallest rms

FIG. 9. Side view of the two buoyant currents after reaching the

geostrophic equilibrium for G1 5 1.2 and G2 5 0.7: (a) B1 5 0.63

and B2 5 0.21; (b) B1 5 0.56 and B2 5 0.31; and (c) B1 5 0.32 and

B25 0.52. The lines in the figure have the samemeaning as in Fig. 8.

The dashed–dotted line indicates the position of y 5 l1 in (b).

FIG. 10. Comparison of the model prediction of the variablesW12,

W1, W2, and l1 with the values measured in the laboratory from

images like those presented in Figs. 8 and 9. Here, l1 presents the

smallest rms error (erms 5 0.37 cm) between the laboratory mea-

surements and the model predictions, while W2, W1, and W12 have

rms errors of 0.98, 1.31, and 1.47 cm, respectively. Much of the rms

error can be accounted for by the presence of a surface Ekman layer

in the laboratory, which causes the model prediction ofW1,W2, and

W12 to be biased low relative to the laboratory measurements.
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error (erms 5 0.37 cm) between the laboratory measure-

ments and the model predictions, while W2, W1, and W12

have rms errors of 0.98, 1.31, and 1.47 cm, respectively.

The small differences observed between the model pre-

diction and the laboratory experiments are thought to be

due primarily to two factors: mixing and viscosity. The

density differences between the three fluids are obtained

by the presence of different amounts of salt. Hence, the

three fluids are miscible and mixing between them can

occur. Care was taken during the experiments tominimize

the amount of mixing. However, a very small amount of

mixing occurs as visible for example in Fig. 8a between

fluid 2 (red) and fluid 3 (black) at approximately y 5
22 cm. The model considers the two fluids immiscible and

cannot capture the continuous variations of density at the

interface caused bymixing. Note thatmixingwill cause the

concentration of the fluorescent dye to diminish and

therefore the intensity of the dye in the mixing region will

be lower, as in Fig. 8a. Furthermore, viscosity will allow

the fluid in the laboratory to develop Ekman layers on the

free surface and at the interface between different fluids.

Viscous dissipation in Ekman layers deforms the depth

profile just below the free surface. The model formulation

does not include viscosity and the small depth deformation

due to the Ekman layers is absent near the free surface.

This effect is barely visible in Figs. 8 and 9 since theEkman

layer thickness is on the order of millimeters. However,

the substantial difference in the rms error between the

variable l1 and the other variables shown in Fig. 10 can be

explained by the presence of Ekman layers in the labo-

ratory. The position of fluid 2 subsurface front marked by

l1 is not affected by theEkman layer present just below the

free surface, and the agreement between the model pre-

diction and the laboratory experiments is very good. The

location of the surface fronts (i.e., W1 and W2) presents

a larger error because the Ekman layer in the laboratory

deforms the front near the free surface. In particular, the

presence of the surface Ekman layer causes the model

prediction of W1 and W2 to be biased low relative to the

laboratory measurements. This bias probably accounts for

much of the rms error.

Finally, the model is formulated in a Cartesian co-

ordinate system while the laboratory experiments present

a polar coordinate geometry. This differencewill influence

the conservation of mass equations (boundary conditions

10 and 11) and the final depth profile. However, for the

small Burger numbers considered in the laboratory (i.e.,

B1# 0.6 andB2# 0.8), the differences in depth profile due

to the two coordinate systems are negligible.

The movement of the inner front toward the coastline

with increasing B1 suggested by Fig. 9 is confirmed by all

experiments and is in agreement with the model pre-

diction shown in Fig. 5a. The model prediction of l1 (solid

line in Fig. 5a) is obtained with fixed values of G1, G2, and

B2, while the laboratory experiments present different

values of the above nondimensional parameters. How-

ever, the dependence of l1 on these nondimensional pa-

rameters is very weak, allowing this comparison to be

made. The small scatter of the laboratory experiments

around the model prediction is mainly due to the differ-

ence in depth (i.e., H1 5 H2 6¼ 2.5 cm) for some of the

laboratory experiments (Table 1). The values of W2 and

W12 are strongly dependent on the values ofG1,G2, andB2

(see Fig. 5b) and a comparison between the laboratory

measurements and the model predictions presented in

Fig. 5a cannot be attempted. The decrease in magnitude

ofW2 with increasingB2 shown in Fig. 9 is also supported

by the other laboratory experiments. The variation ofW2

with B2 in the laboratory is compared with the model

prediction in Fig. 5b. The model prediction of W2 is ob-

tained with fixed values of B1, but the dependence is

weak. However, the dependence ofW2 on G1 and on G2 is

very strong, as indicated by the three different thick lines

in Fig. 5b (the dependence onH15H2 is similarly strong;

not shown). The laboratory data present a larger scatter

compared to that in Fig. 5a. This is due to the fact that the

measurements ofW2 have a larger error than l1 because of

the presence of Ekman layers and because some of the

experiments have different initial depths than used in the

model (H1 5 H2 6¼ 2.5 cm; Table 1).

6. Conclusions

The geostrophic adjustment of two buoyant fluids of

different densities in a third denser ambient fluid is pre-

sented using both an analytical model and laboratory

experiments. In the laboratory, the two buoyant fluids

initially at rest evolve to generate two buoyant currents

whose vertical and horizontal alignment is controlled

primarily by two nondimensional parameters, G1 and G2.

Furthermore, theBurger number of the two buoyant fluids

controls the location of the fronts relative to the coastline.

The prediction of the model of a geostrophic adjust-

ment of two buoyant fluids compares favorably with the

laboratory experiments, enabling us to extend the range

of values of the nondimensional numbers achievable in

the laboratory and come to the following conclusions.

After reaching the geostrophic equilibrium, the two

buoyant coastal currents align mainly horizontally for

G1 � 1 and G2 � 1 with very little vertical overlap (Figs.

2b, 8c). In the case in which G1 ’ G2 ’ 1, the buoyant

currents align mainly vertically (Figs. 2a, 8a). Further-

more, an increasing value ofB1 moves the position of the

inner front toward the coastal wall, while an increasing

value of B2 moves the position of the outer front toward

the coastline (Figs. 4, 5, 9).
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The laboratory results suggest that the solutions found

with the analytical model are unstable. However, we

believe that the results found in this study are applicable

to unstable buoyant coastal currents. Although the

frontal instability changes the frontal location in time,

the solutions found with the model should apply to un-

stable coastal currents when the variables of interest are

suitably integrated in time for a period that is much

longer than the evolution of a singular wave perturba-

tion. For example, although an instantaneous observa-

tion of two adjacent buoyant coastal current that are

unstable may look different than themodel prediction, a

time average location of the two fronts should still agree

with the model prediction and the alignment of the two

fronts should still depend on the nondimensional num-

bers discussed above. In the present study, the experi-

mental set up used to generate buoyant currents relies

on a constant volume of buoyant fluid (section 4). To test

the above prediction the current needs to have a con-

stant supply of buoyant fluid, as occurs in nature, in or-

der to replenish the buoyant fluid lost to the ambient via

the eddies generated by the instability. Future contri-

butions will focus on the stability of the two buoyant

fronts and the applicability of the model results to un-

stable buoyant currents.

The present study, albeit very idealized, brings some

insights on how the water masses of two individual

buoyant coastal currents align relative to each other

vertically and horizontally. For example, in the scenario

in which fluid 2 is polluted or contains harmful algae, one

could be concerned with the likelihood of fluid 2

reaching the coastline. In the absence of downwelling-

favorable winds, the results of the present study suggest

the following. For B1 � 1, the water mass of fluid 2

should flow far away from the coastline, which may en-

sure that the pollution or harmful algae remain offshore.

For values of B1 and B2 O(1), G1 � 1, and G2 � 1, the

alignment of the two buoyant currents should be mainly

horizontal; hence, vertical mixing generated by winds or

tides should occur primarily between the polluted waters

(fluid 2) and the open ocean (fluid 3). Only a small part of

the current close to the coastline (fluid 1) should mix with

the polluted current (fluid 2), and the mixed polluted

waters should remain offshore. The pollutants or harmful

algae should be expected to arrive closer to the coastline

forB1� 1, when the interfacial front between fluids 1 and

2 is close to the coastline, and for B1 and B2 being O(1)

and G1 ’ G2 ’ 1. In the latter case, the alignment of the

two buoyant currents should be mainly vertical. Hence,

mixing generated bywinds or tides should occur primarily

between the polluted waters (fluid 2) and the fluid close

to the coastline (fluid 1), increasing the likelihood of

the polluted waters reaching the coastline. The above

interpretation of the present results of a very idealized

model and laboratory experiments is highly speculative

and should be interpreted with care. However, it high-

lights how idealized studies such as the present one may

bring insight in interpreting more complex models and

oceanic observations. Our model and laboratory experi-

ments do not take into account two important forcings

present in the ocean: winds and tides.

Winds are intermittent events and our results should

apply when winds are absent or low. Upwelling and

downwelling winds have been shown to significantly

change the structure of buoyant plumes (e.g., Fong et al.

1997; Fong and Geyer 2001; Garcia Berdeal et al. 2002;

Lentz 2004; Geyer et al. 2004; Hetland and Signell 2005).

Upwelling winds, for example, tend to spread the plume

oceanward, cause it to thin, and thereby enhance vertical

mixingwith the ambient oceanwater.Downwellingwinds

tend to push the plume toward the coast and thicken it

and will clearly modify the likelihood of offshore pollut-

ants reaching the coastline. Upwelling-favorable winds

enhance vertical mixing processes, but the relative align-

ment of the two buoyant currents should be maintained

since the system as a whole is moved offshore.

Tides will increase vertical mixing, via bottom boundary

generated turbulence, which may influence the buoyant

currents in shallow waters near the coast, particularly

within the estuary and the near-field region of the entrance

of the plume into the coastal ocean (MacDonald et al.

2007). The effects of tides will be to change the initial

conditions of our model or laboratory experiments but

should not dramatically influence the alignment of buoy-

ant currents along the coast, downstream of estuary

sources, where tidal currents are comparatively weak.

Further work is necessary to determine the relevance

of this idealized study to real buoyant coastal currents

composed by waters emanating from different sources

under realistic forcing by tides and winds.
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