23 research outputs found

    Massage-like stroking boosts the immune system in mice

    Get PDF
    Recent clinical evidence suggests that the therapeutic effect of massage involves the immune system and that this can be exploited as an adjunct therapy together with standard drug-based approaches. In this study, we investigated the mechanisms behind these effects exploring the immunomodulatory function of stroking as a surrogate of massage-like therapy in mice. C57/BL6 mice were stroked daily for 8 days either with a soft brush or directly with a gloved hand and then analysed for differences in their immune repertoire compared to control non-stroked mice. Our results show that hand-but not brush-stroked mice demonstrated a significant increase in thymic and splenic T cell number (p lt 0.05; p lt 0.01). These effects were not associated with significant changes in CD4/CD8 lineage commitment or activation profile. The boosting effects on T cell repertoire of massage-like therapy were associated with a decreased noradrenergic innervation of lymphoid organs and counteracted the immunosuppressive effect of hydrocortisone in vivo. Together our results in mice support the hypothesis that massage-like therapies might be of therapeutic value in the treatment of immunodeficiencies and related disorders and suggest a reduction of the inhibitory noradrenergic tone in lymphoid organs as one of the possible explanations for their immunomodulatory function

    Glucocorticoids, master modulators of the thymic catecholaminergic system?

    Get PDF
    There is evidence that the major mediators of stress, i.e., catecholamines and glucocorticoids, play an important role in modulating thymopoiesis and consequently immune responses. Furthermore, there are data suggesting that glucocorticoids influence catecholamine action. Therefore, to assess the putative relevance of glucocorticoid-catecholamine interplay in the modulation of thymopoiesis we analyzed thymocyte differentiation/maturation in non-adrenalectomized and andrenalectomized rats subjected to treatment with propranolol (0.4 mg.100 g body weight(-1).day(-1)) for 4 days. The effects of beta-adrenoceptor blockade on thymopoiesis in non-adrenalectomized rats differed not only quantitatively but also qualitatively from those in adrenalectomized rats. In adrenalectomized rats, besides a more efficient thymopoiesis [judged by a more pronounced increase in the relative proportion of the most mature single-positive TCR alpha beta(high) thymocytes as revealed by two-way ANOVA; for CD4(+)CD8(-)F (1,20) = 10.92, P lt 0.01; for CD4(-)CD8(+)F (1,20) = 7.47, P lt 0.05], a skewed thymocyte maturation towards the CD4(-)CD8(+) phenotype, and consequently a diminished CD4(+)CD8(-)/CD4(-)CD8(+) mature TCR alpha beta(high) thymocyte ratio (3.41 +/- 0.21 in non-adrenalectomized rats vs 2.90 +/- 0.31 in adrenalectomized rats, P lt 0.05) were found. Therefore, we assumed that catecholaminergic modulation of thymopoiesis exhibits a substantial degree of glucocorticoid-dependent plasticity. Given that glucocorticoids, apart from catecholamine synthesis, influence adrenoceptor expression, we also hypothesized that the lack of adrenal glucocorticoids affected not only beta-adrenoceptor- but also alpha-adrenoceptor-mediated modulation of thymopoiesis

    Fertilization biology of 'Reka' highbush blueberry

    No full text
    The paper presents results of the three-year study of fertilization biology of 'Reka' highbush blueberry (Vaccinium corymbosum L.) under the cross-, open and self-pollination variants. Cross-pollination was performed using the pollen of 'Bluecrop', 'Duke', 'Nui' and 'Ozarkblue'. Pollen tube growth in vivo was monitored using fluorescent microscopy method. The folowing parameters were observed: the average number of pollen tubes in the upper part and base of the style, number of ovary locules with the penetration of pollen tubes, and polen tubes' growth dynamics through certain pistil parts. The highest number of pollen tubes in the upper part and base of the style, as well as the fastest penetration into the ovary locules were found in the open pollination variant. Significant decrease of pollen tubes number from the upper third to the base of the style has been recorded in all pollination variants, whereas in the self-pollination variant it was to the greatest extent. The results also indicated that pollen tube growth dynamics in the progamic phase of fertilization was significantly influenced by pollenizer genotype and environmental factors, temperature in particular. On the second day after pollination, pollen tubes penetrated the ovary locules in all pollination variants, implying that favourable period for fertilization in this cultivar was one to two days after flower opening. In self- and cross-pollination variants, dynamics of pollen tubes growth was similar, indicating that cultivar 'Reka', commonly grown in multi-varietal, could also be grown in mono-varietal plantations (without pollenizers)

    Role of gonadal hormones in programming developmental changes in thymopoietic efficiency and sexual diergism in thymopoiesis

    No full text
    There is a growing body of evidence indicating the important role of the neonatal steroid milieu in programming sexually diergic changes in thymopoietic efficiency, which in rodents occur around puberty and lead to a substantial phenotypic and functional remodeling of the peripheral T-cell compartment. This in turn leads to an alteration in the susceptibility to infection and various immunologically mediated pathologies. Our laboratory has explored interdependence in the programming and development of the hypothalamo-pituitary-gonadal axis and thymus using experimental model of neonatal androgenization. We have outlined critical points in the complex process of T-cell development depending on neonatal androgen imprinting and the peripheral outcome of these changes and have pointed to underlying mechanisms. Our research has particularly contributed to an understanding of the putative role of changes in catecholamine-mediated communications in the thymopoietic alterations in adult neonatally androgenized rats

    End-point effector stress mediators in neuroimmune interactions: their role in immune system homeostasis and autoimmune pathology

    No full text
    Much evidence has identified a direct anatomical and functional link between the brain and the immune system, with glucocorticoids (GCs), catecholamines (CAs), and neuropeptide Y (NPY) as its end-point mediators. This suggests the important role of these mediators in immune system homeostasis and the pathogenesis of inflammatory autoimmune diseases. However, although it is clear that these mediators can modulate lymphocyte maturation and the activity of distinct immune cell types, their putative role in the pathogenesis of autoimmune disease is not yet completely understood. We have contributed to this field by discovering the influence of CAs and GCs on fine-tuning thymocyte negative selection and, in particular, by pointing to the putative CA-mediated mechanisms underlying this influence. Furthermore, we have shown that CAs are implicated in the regulation of regulatory T-cell development in the thymus. Moreover, our investigations related to macrophage biology emphasize the complex interaction between GCs, CAs and NPY in the modulation of macrophage functions and their putative significance for the pathogenesis of autoimmune inflammatory diseases

    Sex Differences in Opioid-Induced Enhancement of Contact Hypersensitivity

    No full text
    Previous research has demonstrated that, in male rats, the magnitude of contact hypersensitivity (CHS) can be enhanced by morphine treatment. The present experiments test the hypothesis that the μ-opioids morphine, etorphine, and buprenorphine would produce significant sex differences in the magnitude of 2,4-dinitrofluorobenzene-induced CHS. During tests conducted over a 192-h period, morphine, etorphine, and buprenorphine administered before elicitation of CHS on the external surface of the ear (pinna) potentiated the CHS response, and the magnitude of this enhancement was significantly greater in females than males. By contrast, morphine had no effect on croton oil-induced irritant contact dermatitis, indicating that morphine's effects on CHS do not generalize to immunologically nonspecific forms of contact dermatitis. Activation of brain μ-opioid receptors is responsible for the effects of morphine on CHS, because intracere-broventricular treatment with the μ-opioid receptor antagonist β-funaltrexamine blocked morphine potentiation of CHS in females and males. The sex differences in morphine potentiation of CHS appear to be a result of the gonadal hormonal milieu, because castration enhanced the CHS response following vehicle and morphine treatment, whereas ovariectomy significantly attenuated the enhancement of CHS by morphine. Because ovariectomy had no effect on the CHS response following vehicle treatment, the presence of female gonadal hormones may underlie the sex differences in morphine potentiation of CHS in gonadally intact animals. Overall, these results support an increased sensitivity to the modulatory effects of opioids on the CHS response in females that depends on the interaction between gonadal hormones and the central μ-opioid system
    corecore