71 research outputs found

    Eliciting the Double-edged Impact of Digitalisation: a Case Study in Rural Areas

    Full text link
    Designing systems that account for sustainability concerns demands for a better understanding of the \textit{impact} that digital technology interventions can have on a certain socio-technical context. However, limited studies are available about the elicitation of impact-related information from stakeholders, and strategies are particularly needed to elicit possible long-term effects, including \textit{negative} ones, that go beyond the planned system goals. This paper reports a case study about the impact of digitalisation in remote mountain areas, in the context of a system for ordinary land management and hydro-geological risk control. The elicitation process was based on interviews and workshops. In the initial phase, past and present impacts were identified. In a second phase, future impacts were forecasted through the discussion of two alternative scenarios: a dystopic, technology-intensive one, and a technology-balanced one. The approach was particularly effective in identifying negative impacts. Among them, we highlight the higher stress due to the excess of connectivity, the partial reduction of decision-making abilities, and the risk of marginalisation for certain types of stakeholders. The study posits that before the elicitation of system goals, requirements engineers need to identify the socio-economic impacts of ICT technologies included in the system, as negative effects need to be properly mitigated. Our study contributes to the literature with: a set of impacts specific to the case, which can apply to similar contexts; an effective approach for impact elicitation; and a list of lessons learned from the experience.Comment: Accepted to IEEE RE 2023, International Conference on Requirements Engineering, 10 pages plus 2 pages of reference

    Smooth Lasso Estimator for the Function-on-Function Linear Regression Model

    Full text link
    A new estimator, named as S-LASSO, is proposed for the coefficient function of a functional linear regression model where values of the response function, at a given domain point, depends on the full trajectory of the covariate function. The S-LASSO estimator is shown to be able to increase the interpretability of the model, by better locating regions where the coefficient function is zero, and to smoothly estimate non-zero values of the coefficient function. The sparsity of the estimator is ensured by a functional LASSO penalty whereas the smoothness is provided by two roughness penalties. The resulting estimator is proved to be estimation and pointwise sign consistent. Via an extensive Monte Carlo simulation study, the estimation and predictive performance of the S-LASSO estimator are shown to be better than (or at worst comparable with) competing estimators already presented in the literature before. Practical advantages of the S-LASSO estimator are illustrated through the analysis of the well known \textit{Canadian weather} and \textit{Swedish mortality dat

    Functional clustering methods for resistance spot welding process data in the automotive industry

    Full text link
    Quality assessment of resistance spot welding (RSW) joints of metal sheets in the automotive industry is typically based on costly and lengthy off-line tests that are unfeasible on the full production, especially on large scale. However, the massive industrial digitalization triggered by the industry 4.0 framework makes available, for every produced joint, on-line RSW process parameters, such as, in particular, the so-called dynamic resistance curve (DRC), which is recognized as the full technological signature of the spot welds. Motivated by this context, the present paper means to show the potentiality and the practical applicability to clustering methods of the functional data approach that avoids the need for arbitrary and often controversial feature extraction to find out homogeneous groups of DRCs, which likely pertain to spot welds sharing common mechanical and metallurgical properties. We intend is to provide an essential hands-on overview of the most promising functional clustering methods, and to apply the latter to the DRCs collected from the RSW process at hand, even if they could go far beyond the specific application hereby investigated. The methods analyzed are demonstrated to possibly support practitioners along the identification of the mapping relationship between process parameters and the final quality of RSW joints as well as, more specifically, along the priority assignment for off-line testing of welded spots and the welding tool wear analysis. The analysis code, that has been developed through the software environment R, and the DRC data set are made openly available online at https://github.com/unina-sfere/funclustRSW

    funcharts: Control charts for multivariate functional data in R

    Full text link
    Modern statistical process monitoring (SPM) applications focus on profile monitoring, i.e., the monitoring of process quality characteristics that can be modeled as profiles, also known as functional data. Despite the large interest in the profile monitoring literature, there is still a lack of software to facilitate its practical application. This article introduces the funcharts R package that implements recent developments on the SPM of multivariate functional quality characteristics, possibly adjusted by the influence of additional variables, referred to as covariates. The package also implements the real-time version of all control charting procedures to monitor profiles partially observed up to an intermediate domain point. The package is illustrated both through its built-in data generator and a real-case study on the SPM of Ro-Pax ship CO2 emissions during navigation, which is based on the ShipNavigation data provided in the Supplementary Material

    Preliminary Assessment of Radiolysis for the Cooling Water System in the Rotating Target of {SORGENTINA}-{RF}

    Get PDF
    The SORGENTINA-RF project aims at developing a 14 MeV fusion neutron source featuring an emission rate in the order of 5-7 x 10(13) s(-1). The plant relies on a metallic water-cooled rotating target and a deuterium (50%) and tritium (50%) ion beam. Beyond the main focus of medical radioisotope production, the source may represent a multi-purpose neutron facility by implementing a series of neutron-based techniques. Among the different engineering and technological issues to be addressed, the production of incondensable gases and corrosion product into the rotating target deserves a dedicated investigation. In this study, a preliminary analysis is carried out, considering the general layout of the target and the present choice of the target material
    • …
    corecore