23 research outputs found

    Sodium groundwater in SE Western Siberia

    Get PDF
    The paper describes the updated results in the study of the formation conditions of sodium water within SE Western Siberia. The authors identified a classification of the types of sodium water, location conditions and chemical composition

    Ground water regimes containing country rock minerals in Southern Kuzbass (case study: Narysk-Ostashkin)

    Get PDF
    The paper describes the calculation results revealing groundwater in equilibrium to carbonates and aluminosilicate minerals of country rocks in Narysk-Ostashkinsk area. It was proved that groundwater is in nonequilibrium to primary (endogenous) minerals in which they dissolve, however are in equilibrium to clays and carbonates which precipitate in the groundwater. The groundwater composition varies

    Chemical elements migration in water-travertin system (Tomsk region, Russia)

    No full text
    To assess the mobility of chemical elements in carbonate, formation processes have calculated the water migration coefficient -Kx and the geochemical mobility coefficient -Kn. The series of geochemical mobility were constructed. The elements that can be deposited and that can be accumulated in water have been distinguished. It is shown that anionic elements - Cl, S, Br, I, U, As, as well as elements such as Na, Mg, Mo, Zr well pass into solution from rocks and remain in the water. Elements such as Ca, Fe, Al, Mn, Si, Ba, Zn, Pb, Co, Hg, Ti, La, Ag, Sn, Cr are most fully deposited in travertines

    Trace elements in nature water of the Naryksko-Ostashkinskaya area (Kuzbass, Russia)

    No full text
    This paper presents data on the trace element composition of lake waters, river waters and groundwater in the area of coalbed methane production. The concentration dependences of some components on the mineralization, organic matter and depth are revealed. It is shown that underground waters of coal deposits are most enriched in microelements

    Sodium groundwater in SE Western Siberia

    No full text

    Geochemistry of Iron in Organogenic Water of Western Siberia, Russia

    Get PDF
    AbstractIn the central part of Western Siberia a study of the chemical composition of bog water was conducted. Bog water contains high concentrations of iron and organic matter. By means of thermodynamic methods were calculate the equilibrium of bog water with the major minerals. It was shown, that bog water is in equilibrium with kaolinite, vivianite, Ξ±-apatite. Primary aluminium minerals are undersaturated and release iron and other elements, to which a bog water are not at equilibrium and which is dissolve actively

    ASSESSMENT OF THE APPLICABILITY OF GEOCHEMICAL GEOTHERMOMETERS FOR FORMATION WATERS OF THE TOMSK REGION

    No full text
    The relevance. When constructing various hydrogeochemical models of basins, accurate data on the temperature of formation waters are required. In the case of thermal waters, where it is difficult to measure temperatures at depth, calculated or empirical expressions – geothermometers – have long been used. For formation waters of sedimentary basins, they are rarely used, since temperatures are lower here, water salinity and pressure are higher. However, even here it is necessary to check the data of deep-seated thermometers, the accuracy of which varies greatly, and, in the absence of data on temperature or the impossibility of measuring it, to reliably calculate them. To do this, it is necessary to select the most suitable geothermometers in these conditions. The main aim: get acquainted with a wide range of geothermometers used, calculate several varieties from the available database of the chemical composition of formation waters in the Tomsk region, compare these calculations with each other and between actually measured data from deep thermometers, identify and justify the most suitable for specific conditions. Objects: formation waters taken during the development of oil fields, mainly waters of Cretaceous and Jurassic deposits, with a depth from near surface conditions to 4,5 km. Methods. When processing the database on the chemical composition of formation waters, basic statistical methods were used; as a result, samples with abnormally high and abnormally low concentrations of components were rejected, as well as those that did not comply with the law of electrical neutrality. The formulas for calculating geothermometers are taken from numerous literary sources. The calculation results were compared with the available data on actually measured temperatures, among themselves, with the depths of water circulation and the geothermal gradient of the region. Results. The types of geothermometers and the conditions for their use were studied in detail according to numerous literary sources. The most suitable in these conditions were selected. As a result, nine different chemical geothermometers were calculated for the first time using the available database of the chemical composition of formation waters in the Tomsk region. It is shown that classical geothermometers (Si, Na-K, Na-K-Ca, K-Mg) do not work in these waters, they do not correlate well with the actually measured data of deep thermometers. Mg-Li and Na-Li geothermometers are recommended, as well as Na-K-Ca geothermometer with Mg correction. These geothermometers filled in the gaps in the database of 650 missing temperatures. It is concluded that it is necessary to further develop geothermometers for formation waters of oil fields, taking into account more modern and accurate data. As a practical result of this work, the possibility of using the obtained temperatures in calculating equilibria in the water-rock system and other calculations is indicated

    Geochemical characterization of underground water of the Naryksko-Ostashkinskaya area (Kuzbass)

    No full text
    The relevance of the study is caused by the need to research hydrogeochemistry of the territory because of the planned large-scale production of coalbed methane. The main aim of the research is to study general hydrogeological and hydrogeochemical features of Naryksko-Ostashkinskaya area, conditions of groundwater supply and unloading, to pay special attention to ash value of water chemistry and genesis (using data on the isotopic composition). The methods used in the study: To carry out a complete chemical analysis of water the authors have used traditional methods as well as methods of spectral, atomic absorption analysis, etc. 18O and 2H(D) of water samples were measured by isotope equilibration applying universal system of preparation and introduction of GasBench II gas samples on mass spectrometer DELTA V ADVANTAGE. The results: The chemical and isotopic analyzes have shown that only infiltration water with local supply areas, with different salinity degrees are developed over the area. The active and slow water exchange zones were singled out. Within the first (top) neutral zone fresh CaHCO3 water is developed. Within the area of slow water exchange (including coals) alkaline HCO3Na (soda) water with salinity to 19 g/l is developed. Water salinity grows with depth mainly due to HCO3 - and Na+ ions, rare due to SO4 2- and Cl- ions. In water of a lower part of the slow water exchange the "oxygen shift" is observed due to isotopic exchange with the rock as a result of greater interaction time in the system water-rock

    Equilibrium-nonequilibrium state of natural waters in the area of Torey lakes (Eastern Transbaikalia) with leading minerals of host rocks

    No full text
    ΠΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ Ρ€Π°Π±ΠΎΡ‚Ρ‹ связана с вопросами формирования химичСского состава ΠΏΠΎΠ΄Π·Π΅ΠΌΠ½Ρ‹Ρ… Π²ΠΎΠ΄ Π² ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½Ρ‹Ρ… обстановках, Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ…, Π² Ρ€Π°ΠΌΠΊΠ°Ρ… рассматриваСмой Π³ΠΈΠΏΠΎΡ‚Π΅Π·Ρ‹ ΠΎ взаимодСйствии Π²ΠΎΠ΄Ρ‹ с ΠΏΠΎΡ€ΠΎΠ΄Π°ΠΌΠΈ, Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ Π±Π΅Π· понимания стСпСни равновСсия Π²ΠΎΠ΄ с ΠΌΠΈΠ½Π΅Ρ€Π°Π»Π°ΠΌΠΈ Π²ΠΌΠ΅Ρ‰Π°ΡŽΡ‰ΠΈΡ… ΠΏΠΎΡ€ΠΎΠ΄. ΠžΡΠΎΠ±ΡƒΡŽ спСцифику этой ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ΅ ΠΏΡ€ΠΈΠ΄Π°Π΅Ρ‚ ΡˆΠΈΡ€ΠΎΠΊΠΎΠ΅ распространСниС Π½Π° Ρ‚Π΅Ρ€Ρ€ΠΈΡ‚ΠΎΡ€ΠΈΠΈ Ρ‚Ρ€Π΅Ρ‰ΠΈΠ½ΠΎΠ²Π°Ρ‚Ρ‹Ρ… Π²ΡƒΠ»ΠΊΠ°Π½ΠΎΠ³Π΅Π½Π½Ρ‹Ρ… структур ΠΈ солСных ΠΎΠ·Π΅Ρ€, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π·Π°ΡΡƒΡˆΠ»ΠΈΠ²Ρ‹ΠΉ ΠΊΠ»ΠΈΠΌΠ°Ρ‚. ΠŸΡ€ΠΈ этом ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ Π³ΠΈΠΏΠΎΡ‚Π΅Π·Ρ‹ Π²Ρ‹Π΄Π΅Π»ΡΡŽΡ‚ ΠΈΡΠΏΠ°Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ процСссы ΠΊΠ°ΠΊ Π²Π΅Π΄ΡƒΡ‰ΠΈΠΉ Ρ„Π°ΠΊΡ‚ΠΎΡ€, приводящий ΠΊ засолСнию Π²ΠΎΠ΄, игнорируя всС ΠΏΡ€ΠΎΡ‡ΠΈΠ΅. ΠœΠ΅ΠΆΠ΄Ρƒ Ρ‚Π΅ΠΌ для ΠΏΠΎΠ΄Π·Π΅ΠΌΠ½Ρ‹Ρ… Π²ΠΎΠ΄ это Π½Π΅ΠΎΡ‡Π΅Π²ΠΈΠ΄Π½ΠΎ. ΠžΠ±Ρ‰Π°Ρ тСория взаимодСйствия Π² систСмС Π²ΠΎΠ΄Π°-ΠΏΠΎΡ€ΠΎΠ΄Π° ΠΌΠΎΠΆΠ΅Ρ‚ Ρ€Π°ΡΠΊΡ€Ρ‹Ρ‚ΡŒ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌ формирования Π²ΠΎΠ΄ Ρ€Π°Π·Π½ΠΎΠ³ΠΎ состава, Π²Ρ‹Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ€Π°Π·Π½Ρ‹Π΅ этапы солСнакоплСния, Π²ΠΊΠ»ΡŽΡ‡Π°Ρ содовый этап, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ нСльзя ΠΎΠ±ΡŠΡΡΠ½ΠΈΡ‚ΡŒ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ процСссами испарСния. Для этого Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ провСсти расчСты стСпСни насыщСнности Π²ΠΎΠ΄ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΌΠΈΠ½Π΅Ρ€Π°Π»ΠΎΠ² Π²ΠΌΠ΅Ρ‰Π°ΡŽΡ‰ΠΈΡ… ΠΏΠΎΡ€ΠΎΠ΄. ЦСль: ΠΎΡ†Π΅Π½ΠΈΡ‚ΡŒ равновСсно-нСравновСсноС состояниС ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½Ρ‹Ρ… Π²ΠΎΠ΄ Ρ‚Π΅Ρ€Ρ€ΠΈΡ‚ΠΎΡ€ΠΈΠΈ с ΠΌΠΈΠ½Π΅Ρ€Π°Π»Π°ΠΌΠΈ Π²ΠΌΠ΅Ρ‰Π°ΡŽΡ‰ΠΈΡ… ΠΏΠΎΡ€ΠΎΠ΄ Π½Π° Ρ€Π°Π·Π½Ρ‹Ρ… этапах ΡΠ²ΠΎΠ»ΡŽΡ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ развития, ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹ΠΉ Π½Π°Π±ΠΎΡ€ Π²Ρ‚ΠΎΡ€ΠΈΡ‡Π½Ρ‹Ρ… ΠΌΠΈΠ½Π΅Ρ€Π°Π»ΠΎΠ² Π½Π° ΠΊΠ°ΠΆΠ΄ΠΎΠΌ этапС ΠΈ Π²Ρ‹Π΄Π΅Π»ΠΈΡ‚ΡŒ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹Π΅ гидрогСохимичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ для ΠΈΡ… образования. Π’ дальнСйшСм Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ Π±ΡƒΠ΄ΡƒΡ‚ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒΡΡ для изучСния ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ² формирования ΠΏΠΎΠ΄Π·Π΅ΠΌΠ½Ρ‹Ρ… Π²ΠΎΠ΄. ΠžΠ±ΡŠΠ΅ΠΊΡ‚Ρ‹. На ΠΏΡƒΡ‚ΠΈ формирования химичСского состава ΠΏΠΎΠ΄Π·Π΅ΠΌΠ½Ρ‹Π΅ Π²ΠΎΠ΄Ρ‹ проходят нСсколько этапов своСго развития, срСди Π½ΠΈΡ…: Π°Ρ‚ΠΌΠΎΠ³Π΅Π½Π½Ρ‹ΠΉ (атмосфСрныС Π²ΠΎΠ΄Ρ‹ ΠΊΠ°ΠΊ источник питания), Π»ΠΈΡ‚ΠΎΠ³Π΅Π½Π½Ρ‹ΠΉ (ΠΏΡ€ΠΈ взаимодСйствии с Π²ΠΌΠ΅Ρ‰Π°ΡŽΡ‰ΠΈΠΌΠΈ ΠΏΠΎΡ€ΠΎΠ΄Π°ΠΌΠΈ) ΠΈ ΠΈΡΠΏΠ°Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ (ΠΏΡ€ΠΈ взаимодСйствии с ΠΎΠ·Π΅Ρ€Π½Ρ‹ΠΌΠΈ Π²ΠΎΠ΄Π°ΠΌΠΈ, ΠΏΠΎΠ΄Π²Π΅Ρ€Π³Π°ΡŽΡ‰ΠΈΠΌΡΡ ΠΈΡΠΏΠ°Ρ€Π΅Π½ΠΈΡŽ). Π§Ρ‚ΠΎΠ±Ρ‹ ΠΏΡ€ΠΎΡΠ»Π΅Π΄ΠΈΡ‚ΡŒ всю ΡΠ²ΠΎΠ»ΡŽΡ†ΠΈΡŽ состава, ΠΊΡ€ΠΎΠΌΠ΅ нСпосрСдствСнно ΠΏΠΎΠ΄Π·Π΅ΠΌΠ½Ρ‹Ρ… Π²ΠΎΠ΄ Π²Π΅Ρ€Ρ…Π½Π΅ΠΉ динамичСской Π·ΠΎΠ½Ρ‹ (Ρ€ΠΎΠ΄Π½ΠΈΠΊΠΈ, ΠΊΠΎΠ»ΠΎΠ΄Ρ†Ρ‹ ΠΈ скваТины Π³Π»ΡƒΠ±ΠΈΠ½ΠΎΠΉ Π΄ΠΎ 70 ΠΌ, всСго 69 ΠΏΡ€ΠΎΠ±), Ρ‚Π°ΠΊΠΆΠ΅ Π±Ρ‹Π»ΠΈ ΠΈΠ·ΡƒΡ‡Π΅Π½Ρ‹ атмосфСрныС (6 ΠΏΡ€ΠΎΠ±), Ρ€Π΅Ρ‡Π½Ρ‹Π΅ (9 ΠΏΡ€ΠΎΠ±) ΠΈ ΠΎΠ·Π΅Ρ€Π½Ρ‹Π΅ (10 ΠΏΡ€ΠΎΠ±) Π²ΠΎΠ΄Ρ‹. ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹. ΠœΠ°ΠΊΡ€ΠΎΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π½Ρ‹ΠΉ состав Π²ΠΎΠ΄Ρ‹ опрСдСлялся соврСмСнными стандартными ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ: титримСтричСским, потСнциомСтричСским, фотомСтричСским, Π°Ρ‚ΠΎΠΌΠ½ΠΎ-абсорбционной спСктромСтриСй с ΠΏΠ»Π°ΠΌΠ΅Π½Π½ΠΎΠΉ Π°Ρ‚ΠΎΠΌΠΈΠ·Π°Ρ†ΠΈΠ΅ΠΉ ΠΈ ΠΏΠ»Π°ΠΌΠ΅Π½Π½ΠΎΠΉ Π°Ρ‚ΠΎΠΌΠ½ΠΎ-эмиссионной спСктромСтриСй Π² ИПРЭК БО РАН, ΠΌΠΈΠΊΡ€ΠΎΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π½Ρ‹ΠΉ - ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ICP-MS Π² ВПУ. ΠŸΠ΅Ρ‚Ρ€ΠΎΠ³Ρ€Π°Ρ„ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ ΠΈ минСралогичСскиС исслСдования Π²ΠΌΠ΅Ρ‰Π°ΡŽΡ‰ΠΈΡ… ΠΏΠΎΡ€ΠΎΠ΄ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈΡΡŒ ΠΏΡ€ΠΈ ΠΏΠΎΠΌΠΎΡ‰ΠΈ растровой элСктронной микроскопии Π² Π’Π“Π£. Π€ΠΈΠ·ΠΈΠΊΠΎ-химичСскоС ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ равновСсий Π² систСмС Π²ΠΎΠ΄Π°-ΠΏΠΎΡ€ΠΎΠ΄Π° Ρ€Π°ΡΡΡ‡ΠΈΡ‚Ρ‹Π²Π°Π»ΠΎΡΡŒ с использованиСм ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½ΠΎΠ³ΠΎ комплСкса HydroGeo. Π—Π°Ρ‚Π΅ΠΌ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ расчСтов ΡΡ€Π°Π²Π½ΠΈΠ²Π°Π»ΠΈΡΡŒ с Π½Π°Ρ‚ΡƒΡ€Π½Ρ‹ΠΌΠΈ наблюдСниями. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. ВСрмодинамичСскиС расчСты Π² систСмС Π²ΠΎΠ΄Π°-ΠΏΠΎΡ€ΠΎΠ΄Π° ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ, Ρ‡Ρ‚ΠΎ всС ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½Ρ‹Π΅ Π²ΠΎΠ΄Ρ‹ Ρ€Π°ΠΉΠΎΠ½Π° ВорСйских ΠΎΠ·Ρ‘Ρ€ ΠΎΡ‚ атмосфСрных осадков Π΄ΠΎ солСных ΠΎΠ·Π΅Ρ€ нСравновСсны ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΏΠ΅Ρ€Π²ΠΈΡ‡Π½Ρ‹Ρ… Π°Π»ΡŽΠΌΠΎΡΠΈΠ»ΠΈΠΊΠ°Ρ‚ΠΎΠ² (Π² особСнности Π±Π°Π·Π°Π»ΡŒΡ‚ΠΎΠ², встрСчСнных Π½Π° сСвСрС Ρ€Π°ΠΉΠΎΠ½Π° исслСдований), ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΎΠ½ΠΈ Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΠΎ Ρ€Π°ΡΡ‚Π²ΠΎΡ€ΡΡŽΡ‚ Π½Π° всСм протяТСнии этого взаимодСйствия, ΠΈ равновСсны ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π²Ρ‚ΠΎΡ€ΠΈΡ‡Π½Ρ‹Ρ… ΠΌΠΈΠ½Π΅Ρ€Π°Π»ΠΎΠ², ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΎΠ½ΠΈ Ρ„ΠΎΡ€ΠΌΠΈΡ€ΡƒΡŽΡ‚ (гиббсит, ΠΊΠ°ΠΎΠ»ΠΈΠ½ΠΈΡ‚, ΠΌΠΎΠ½Ρ‚ΠΌΠΎΡ€ΠΈΠ»Π»ΠΎΠ½ΠΈΡ‚Ρ‹, Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ ΠΊΠ°Ρ€Π±ΠΎΠ½Π°Ρ‚Ρ‹, Ρ…Π»ΠΎΡ€ΠΈΡ‚Ρ‹, Π°Π»ΡŒΠ±ΠΈΡ‚, ΠΌΠΈΠΊΡ€ΠΎΠΊΠ»ΠΈΠ½, мусковит ΠΈ Π΄Ρ€.). ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Π½Π°ΠΌΠΈ ΠΏΡ€ΠΈ расчСтах основныС Ρ„ΠΈΠ·ΠΈΠΊΠΎ-химичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ (химичСский состав, рН ΠΈ ΡΠΎΠ»Π΅Π½ΠΎΡΡ‚ΡŒ Π²ΠΎΠ΄Ρ‹), ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠ³ΠΎ Π²Ρ‚ΠΎΡ€ΠΈΡ‡Π½ΠΎΠ³ΠΎ ΠΌΠΈΠ½Π΅Ρ€Π°Π»Π°.The relevance of the work is related to the issues of the groundwater's chemical composition formation in environmental conditions, the solution of which, within the framework of the considered hypothesis of the interaction of water with rocks, is impossible without understanding the stage of water's equilibrium with minerals of host rocks. This problem is particularly specific due to the wide distribution of fissured volcanogenic structures and salt lakes in the territory, as well as the dry climate. At the same time, existing hypotheses single out evaporation processes as the key factor leading to water salinization, ignoring all others. Meanwhile, this is not obvious for groundwater. The general theory of interaction in the water-rock system can reveal the mechanism of water's different composition formation, distinguish different stages of salt accumulation, including the soda stage, which cannot be explained only by evaporation processes. To do this, it is necessary to calculate the degree of water saturation relative to the minerals of the host rocks. The aim of the research is to assess the equilibrium-nonequilibrium state of the natural waters in the territory with minerals of host rocks at different stages of evolutionary development, to determine the possible set of secondary minerals at each stage and to identify necessary hydrogeochemical parameters for their formation. In the future, the results will be used to study the mechanisms of groundwater formation. Objects. During chemical composition formation, groundwater goes through several stages of its development, among them: atmospheric (atmospheric waters as a source of nutrition), lithogenic (when interacting with host rocks) and evaporative (when interacting with lake waters that undergo evaporation). In order to trace the entire evolution of the composition, in addition to the directly groundwater of the upper dynamic zone (springs, wells and boreholes up to 70 m deep, 69 samples in total), atmospheric (6 samples), river (9 samples) and lake (10 samples) waters were also studied. Methods. Water's macrocomponent composition was determined by modern standard methods: titrimetric, potentiometric, photometric, atomic absorption spectrometry with flame atomization and flame atomic emission spectrometry at the INREC SB RAS (Chita), microcomponent - by the ICP-MS method at TPU (Tomsk). Petrographic and mineralogical studies of host rocks were carried out using scanning electron microscopy at TSU (Tomsk). Physico-chemical modeling of equilibria in the water-rock system was calculated using the HydroGeo software package. Then the calculation results were compared with natural observations. Results. Thermodynamic calculations in the water-rock system showed that all natural waters of the Torey Lakes area from atmospheric precipitation to salt lakes are nonequilibrium with respect to primary aluminosilicates (especially basalts, which are found in the north of the study area), which they continuously dissolve throughout this interaction, and are in equilibrium with respect to secondary minerals they form (gibbsite, kaolinite, montmorillonites, various carbonates, chlorites, albite, microcline, muscovite, etc.). The paper introduces the main physicochemical parameters (chemical composition, pH and salinity of water) obtained by the authors in the calculations, which control the formation of a certain secondary mineral
    corecore