10 research outputs found

    Social Competitiveness and Plasticity of Neuroendocrine Function in Old Age: Influence of Neonatal Novelty Exposure and Maternal Care Reliability

    Get PDF
    Early experience is known to have a profound impact on brain and behavioral function later in life. Relatively few studies, however, have examined whether the effects of early experience remain detectable in the aging animal. Here, we examined the effects of neonatal novelty exposure, an early stimulation procedure, on late senescent rats' ability to win in social competition. During the first 3 weeks of life, half of each litter received daily 3-min exposures to a novel environment while the other half stayed in the home cage. At 24 months of age, pairs of rats competed against each other for exclusive access to chocolate rewards. We found that novelty-exposed rats won more rewards than home-staying rats, indicating that early experience exerts a life-long effect on this aspect of social dominance. Furthermore, novelty-exposed but not home-staying rats exhibited habituation of corticosterone release across repeated days of social competition testing, suggesting that early experience permanently enhances plasticity of the stress response system. Finally, we report a surprising finding that across individual rat families, greater effects of neonatal novelty exposure on stress response plasticity were found among families whose dams provided more reliable, instead of a greater total quantity of, maternal care

    Cross-education does not accelerate the rehabilitation of neuromuscular functions after ACL reconstruction: a randomized controlled clinical trial

    Get PDF
    Purpose: Cross-education reduces quadriceps weakness 8 weeks after anterior cruciate ligament (ACL) surgery, but the long-term effects are unknown. We investigated whether cross-education, as an adjuvant to the standard rehabilitation, would accelerate recovery of quadriceps strength and neuromuscular function up to 26 weeks post-surgery. Methods: Group allocation was randomized. The experimental (n = 22) and control (n = 21) group received standard rehabilitation. In addition, the experimental group strength trained the quadriceps of the non-injured leg in weeks 1–12 post-surgery (i.e., cross-education). Primary and secondary outcomes were measured in both legs 29 ± 23 days prior to surgery and at 5, 12, and 26 weeks post-surgery. Results: The primary outcome showed time and cross-education effects. Maximal quadriceps strength in the reconstructed leg decreased 35% and 12% at, respectively, 5 and 12 weeks post-surgery and improved 11% at 26 weeks post-surgery, where strength of the non-injured leg showed a gradual increase post-surgery up to 14% (all p ≤ 0.015). Limb symmetry deteriorated 9–10% more for the experimental than control group at 5 and 12 weeks post-surgery (both p ≤ 0.030). One of 34 secondary outcomes revealed a cross-education effect: Voluntary quadriceps activation of the reconstructed leg was 6% reduced for the experimental vs. control group at 12 weeks post-surgery (p = 0.023). Both legs improved force control (22–34%) and dynamic balance (6–7%) at 26 weeks post-surgery (all p ≤ 0.043). Knee joint proprioception and static balance remained unchanged. Conclusion: Standard rehabilitation improved maximal quadriceps strength, force control, and dynamic balance in both legs relative to pre-surgery but adding cross-education did not accelerate recovery following ACL reconstruction

    Cross-education does not improve early and late-phase rehabilitation outcomes after ACL reconstruction: a randomized controlled clinical trial

    Get PDF
    Purpose: Limited evidence suggests that cross-education affords clinical benefits in the initial 8 weeks after anterior cruciate ligament (ACL) reconstruction, but it is unknown if such cross-education effects are reproducible and still present in later phases of rehabilitation. We examined whether cross-education, as an adjuvant to standard therapy, would accelerate the rehabilitation up to 26 weeks after ACL reconstruction by attenuating quadriceps weakness. Methods: ACL-reconstructed patients were randomized into experimental (n = 22) and control groups (n = 21). Both groups received standard care after ACL reconstruction. In addition, the experimental group strength trained the quadriceps of the non-operated leg during weeks 1–12 after surgery (i.e., cross-education). Self-reported knee function was assessed with the Hughston Clinic Knee score as the primary outcome. Secondary outcomes were maximal quadriceps and hamstring strength and single leg hop distance. All outcomes were measured 29 ± 23 days prior to surgery, as a reference, and at 5-week, 12-week, and 26-week post-surgery. Results: Both groups scored 12% worse on self-reported knee function 5-week post-surgery (95% CI 7–17) and showed 15% improvement 26-week post-surgery (95% CI − 20 to − 10). No cross-education effect was found. Interestingly, males scored 8–10% worse than females at each time point post-surgery. None of 33 secondary outcomes showed a cross-education effect. At 26-week post-surgery, both legs improved maximal quadriceps (5–14%) and hamstring strength (7–18%), and the non-injured leg improved 2% in hop distance. The ACL recovery was not affected by limb dominance and age. Conclusion: 26 weeks of standard care improved self-reported knee function and maximal leg strength relative to pre-surgery and adding cross-education did not further accelerate ACL recovery

    Percutaneous Transluminal Angioplasty and Stent Placement for Subclavian Steal Syndrome With Concomitant Anterograde Flow in the Left Internal Mammary Artery Graft for Coronary Artery Bypass-Case Report-

    No full text

    Mitralstenose

    No full text

    References

    No full text
    corecore