8 research outputs found

    Towards Viral Genome Annotation Standards, Report from the 2010 NCBI Annotation Workshop

    Get PDF
    Improvements in DNA sequencing technologies portend a new era in virology and could possibly lead to a giant leap in our understanding of viral evolution and ecology. Yet, as viral genome sequences begin to fill the world’s biological databases, it is critically important to recognize that the scientific promise of this era is dependent on consistent and comprehensive genome annotation. With this in mind, the NCBI Genome Annotation Workshop recently hosted a study group tasked with developing sequence, function, and metadata annotation standards for viral genomes. This report describes the issues involved in viral genome annotation and reviews policy recommendations presented at the NCBI Annotation Workshop

    A modular view of the bacteriophage genomic space: identification of host and lifestyle marker modules

    No full text
    Bacteriophage genomes can be regarded as an ensemble of modules which are accessible to the whole phage population via recombination. The time spent by prophages in the bacterial host provides them with the opportunity to exchange modules with other prophages or infecting phages. Here we analyze the modular structure of a set of 457 phages and 760 prophages extracted from completely sequenced bacterial genomes using the ACLAME database and its associated tools. We identified 91 modules of proteins with similar phylogenetic profiles. Of these, 25 and 6 are associated with temperate and virulent phages, respectively; 57 are restricted to a host or small group of hosts; and 55 could be annotated with a phage function. We use the transposable phages as a study case and show how the inclusion of prophages allows us to unveil new types of genome organization (i.e. novel module combinations) and obtain insight into the host range for this particular group, highlighting the utility of prophage prediction to better characterize phage diversity

    Protein structure prediction: Playing the fold.

    No full text
    [No abstract available]close3

    Evidence for copper homeostasis function of metallothionein (MT3) in the hyperaccumulator Thlaspi caerulescens

    Get PDF
    Metallothioneins chelate metals and consequently may be a control point of metal homeostasis. Homologous to type 3 metallothioneins, TcMT3 cDNA was identified in the Cd/Zn hyperaccumulator, Thlaspi caerulescens. TcMT3 amino acid sequence showed modifications in the Cys positions when compared with its Arabidopsis orthologue. A structural model established that the MT3 carboxyterminal domain is similar to the β domain of animal metallothioneins and predicts a smaller cavity to chelate metals for A. thaliana than for T. caerulescens. Functional testing in yeast and Northern blot analysis added further evidence for adaptative variations of MT3 for the maintenance of Cu homeostasis in a metal hyperaccumulator. © 2004 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.Journal ArticleResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Variations in plant metallothioneins: the heavy metal hyperaccumulator Thlaspi caerulescens as a study case

    No full text
    Plant metallothioneins (MTs) are extremely diverse and are thought to be involved in metal homeostasis or detoxification. Thlaspi caerulescens is a model Zn/Cd hyperaccumulator and thus constitutes an ideal system to study the variability of these MTs. Two T. caerulescens cDNAs (accession: 665511; accession: 665515), that are highly homologous to type 1 and type 2 Arabidopsis thaliana MTs, have been isolated using a functional screen for plant cDNAs that confer Cd tolerance to yeast. However, TcMT1 has a much shorter N-terminal domain than that of A. thaliana and so lacks Cys motifs conserved through all the plant MTs classified as type 1. A systematic search in plant databases allowed the detection of MT-related sequences. Sixty-four percent fulfil the criteria for MT classification described in Cobbett and Goldsbrough (2002) and further extend our knowledge about other conserved residues that might play an important role in plant MT structure. In addition, 34% of the total MT-related sequences cannot be classified strictly as they display modifications in the conserved residues according to the current plant MTs' classification. The significance of this variability in plant MT sequences is discussed. Functional complementation in yeast was used to assess whether these variations may alter the MTs' function in T. caerulescens. Regulation of the expression of MTs in T. caerulescens was also investigated. TcMT1 and TcMT2 display higher expression in T. caerulescens than in A. thaliana. Moreover, their differential expression patterns in organs and in response to metal exposure, suggest that the two types of MTs may have diverse roles and functions in T. caerulescens. © Springer-Verlag 2005.Journal ArticleResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore