15 research outputs found

    An Evaluation System for University-Industry Partnership Sustainability: Enhancing Options for Entrepreneurial Universities

    Get PDF
    The concept of university–industry partnership sustainability (UIPS) stands for well-adjusted progress among key players from universities and industry by sustaining their welfare, both in the present and in the future. This paper sought to develop an evaluation system for UIPS. The need for such a system is justified at three levels: the micro level (i.e., research and innovation performance, transfer and absorptive capability, and technology development), the meso level (i.e., institutional arrangements, communication networks, and local and indigenous rules) and the macro level (i.e., supply and demand, regulations, financing, taxes, culture, traditions, market, climate, politics, demographics, and technology). The UIPS evaluation system developed in this study offers the possibility of calculating a fair value of UIPS and providing recommendations for improving university–industry (U–I) partnerships. This can be of great importance for entrepreneurial universities that would like to strengthen their corporate links and/or reduce/reverse the “hollowing effect” of globalisation in disadvantaged regions. Additionally, this paper also contains discussions on the advantages, limitations, and managerial implications of this proposal.info:eu-repo/semantics/publishedVersio

    Elucidating "screw dislocation"-driven film formation of sodium thiosulphate with complex hierarchical molecular assembly

    No full text
    Sodium thiosulphate (Na2S2O3) films were synthesized on carbon steel substrates through solution deposition, and a film formation growth mechanism is delineated in detail herein. Dislocation-driven film formation took place at the lower concentration of Na2S2O3 (0.1 M) studied, where screw dislocation loops were identified. Interestingly, we observed the co-existence of screw dislocation spiral loops and hierarchically-ordered molecular assembly in the film, and showed the importance of hierarchical morphology in the origin of screw dislocation. The screw dislocation loops were, however, distorted at the higher studied concentration of Na2S2O3 (0.5 M), and no hierarchical structures were formed. The mechanisms of film formation are discussed in detail and provide new insights into our understanding regarding morphology of the hierarchical molecular assembly, screw dislocation loop formation, and the role of chemical elements for their development. The main crystalline and amorphous phases in the surface films were identified as pyrite/mackinawite and magnetite. As sodium thiosulphate is widely used for energy, corrosion inhibition, nanoparticle synthesis and catalysis applications, the knowledge generated in this study is applicable to the fields of corrosion, materials science, materials chemistry and metallurgy
    corecore