58 research outputs found

    A Census of White Dwarfs Within 40 Parsecs of the Sun

    Full text link
    Our aim is to compile a catalog of white dwarfs within 40 parsecs of the Sun, in which newly discovered objects would significantly increase the completeness of the current census. White dwarf candidates are identified from the SUPERBLINK proper motion database (Lepine & Shara 2005), which allows us to investigate stars down to a proper motion limit as low as 40 mas yr-1. The selection criteria and distance estimates are based on a combination of color-magnitude and reduced proper motion diagrams. Candidates with distances less than 50 parsecs are selected for spectroscopic follow-up. We present our preliminary sample of spectroscopically confirmed white dwarfs, as well as their atmospheric parameters. These parameters are obtained using the spectroscopic technique developed in Bergeron et al.(1992) for DA stars. DB, DQ, and DZ stars are also analyzed spectroscopically. For featureless spectra as well as those showing only Halpha, we perform a detailed photometric analysis of their energy distribution.Comment: 4 pages, 3 figures, to appear in AIP Conference Proceedings for the 17th European White Dwarf Worksho

    Optical BVRI Photometry of Common Proper Motion F/G/K+M Wide Separation Binaries

    Get PDF
    We present optical (BVRI) photometric measurements of a sample of 76 common proper motion wide separation main sequence binary pairs. The pairs are composed of a F-, G-, or K-type primary star and an M-type secondary. The sample is selected from the revised NLTT catalog and the LSPM catalog. The photometry is generally precise to 0.03 mag in all bands. We separate our sample into two groups, dwarf candidates and subdwarf candidates, using the reduced proper motion (RPM) diagram constructed with our improved photometry. The M subdwarf candidates in general have larger VRV-R colors than the M dwarf candidates at a given VIV-I color. This is consistent with an average metallicity difference between the two groups, as predicted by the PHOENIX/BT-Settl models. The improved photometry will be used as input into a technique to determine the metallicities of the M-type stars.Comment: 26 pages, 8 figures, accepted for publication in A

    Activity and Kinematics of White Dwarf-M Dwarf Binaries from the SUPERBLINK Proper Motion Survey

    Full text link
    We present an activity and kinematic analysis of high proper motion white dwarf-M dwarf binaries (WD+dMs) found in the SUPERBLINK survey, 178 of which are new identifications. To identify WD+dMs, we developed a UV-optical-IR color criterion and conducted a spectroscopic survey to confirm each candidate binary. For the newly identified systems, we fit the two components using model white dwarf spectra and M dwarf template spectra to determine physical parameters. We use Hα\alpha chromospheric emission to examine the magnetic activity of the M dwarf in each system, and investigate how its activity is affected by the presence of a white dwarf companion. We find that the fraction of WD+dM binaries with active M dwarfs is significantly higher than their single M dwarf counterparts at early and mid spectral types. We corroborate previous studies that find high activity fractions at both close and intermediate separations. At more distant separations the binary fraction appears to approach the activity fraction for single M dwarfs. Using derived radial velocities and the proper motions, we calculate 3D space velocities for the WD+dMs in SUPERBLINK. For the entire SUPERBLINK WD+dMs, we find a large vertical velocity dispersion, indicating a dynamically hotter population compared to high proper motion samples of single M dwarfs. We compare the kinematics for systems with active M dwarfs and those with inactive M dwarfs, and find signatures of asymmetric drift in the inactive sample, indicating that they are drawn from an older population.Comment: 17 pages, 7 figures, 4 tables, Accepted to The Astronomical Journa

    Prospecting in late-type dwarfs: a calibration of infrared and visible spectroscopic metallicities of late-K and M dwarfs spanning 1.5 dex

    Full text link
    Knowledge of late K and M dwarf metallicities can be used to guide planet searches and constrain planet formation models. However, the determination of metallicities of late-type stars is difficult because visible wavelength spectra of their cool atmospheres contain many overlapping absorption lines, preventing the measurement of equivalent widths. We present new methods, and improved calibrations of existing methods, to determine metallicities of late-K and M dwarfs from moderate resolution (1300 < R < 2000) visible and infrared spectra. We select a sample of 112 wide binary systems that contain a late-type companion to a solar-type primary star. Our sample includes 62 primary stars with previously published metallicities, as well as 50 stars with metallicities determined from our own observations. We use our sample to empirically determine which features in the spectrum of the companion are best correlated with the metallicity of the primary. We derive metallicity calibrations for different wavelength ranges, and show that it is possible to get metallicities reliable to < 0.10 dex using either visible, J, H, or K band spectra. Our calibrations are applicable to dwarfs with metallicities of -1.04 < [Fe/H]< +0.56 and spectral types from K7 to M5. Lastly, we use our sample of wide binaries to test and refine existing calibrations to determine M dwarf metallicities. We find that the zeta parameter, which measures the ratio of TiO can CaH bands, is correlated with [Fe/H] for super-solar metallicities, and zeta does not always correctly identify metal-poor M dwarfs. We also find that existing calibrations in the K and H band are quite reliable for stars with [Fe/H] > -0.5, but are less useful for more metal-poor stars.Comment: 16 pages, 6 figures, two electronic tables. Published in the Astronomical Journal. July 2013 update: corrected a typo in the H2O-J band definition, clarified calibration assumes equivalent widths in Angstroms. May 2014 update: IDL program for calculating metallicities is now on github (https://github.com/awmann/metal

    A Catalog of Cool Dwarf Targets for the Transiting Exoplanet Survey Satellite

    Get PDF
    We present a catalog of cool dwarf targets (VJ>2.7V-J>2.7, Teff4000KT_{\rm eff} \lesssim 4000 K) and their stellar properties for the upcoming Transiting Exoplanet Survey Satellite (TESS), for the purpose of determining which cool dwarfs should be observed using two-minute observations. TESS has the opportunity to search tens of thousands of nearby, cool, late K and M-type dwarfs for transiting exoplanets, an order of magnitude more than current or previous transiting exoplanet surveys, such as {\it Kepler}, K2 and ground-based programs. This necessitates a new approach to choosing cool dwarf targets. Cool dwarfs were chosen by collating parallax and proper motion catalogs from the literature and subjecting them to a variety of selection criteria. We calculate stellar parameters and TESS magnitudes using the best possible relations from the literature while maintaining uniformity of methods for the sake of reproducibility. We estimate the expected planet yield from TESS observations using statistical results from the Kepler Mission, and use these results to choose the best targets for two-minute observations, optimizing for small planets for which masses can conceivably be measured using follow up Doppler spectroscopy by current and future Doppler spectrometers. The catalog is incorporated into the TESS Input Catalog and TESS Candidate Target List until a more complete and accurate cool dwarf catalog identified by ESA's Gaia Mission can be incorporated.Comment: Accepted to The Astronomical Journal. For the full catalog, please contact the corresponding autho
    corecore