41 research outputs found

    The genetic basis of familial adenomatous polyposis and its implications for clinical practice and risk management

    No full text
    Maria Liz Leoz, Sabela Carballal, Leticia Moreira, Teresa Ocaña, Francesc Balaguer Department of Gastroenterology, Hospital Clínic, Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBERehd), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain Abstract: Familial adenomatous polyposis (FAP) is an inherited disorder that represents the most common gastrointestinal polyposis syndrome. Germline mutations in the APC gene were initially identified as responsible for FAP, and later, several studies have also implicated the MUTYH gene as responsible for this disease, usually referred to as MUTYH-associated polyposis (MAP). FAP and MAP are characterized by the early onset of multiple adenomatous colorectal polyps, a high lifetime risk of colorectal cancer (CRC), and in some patients the development of extracolonic manifestations. The goal of colorectal management in these patients is to prevent CRC mortality through endoscopic and surgical approaches. Individuals with FAP and their relatives should receive appropriate genetic counseling and join surveillance programs when indicated. This review is focused on the description of the main clinical and genetic aspects of FAP associated with germline APC mutations and MAP. Keywords: colorectal cancer, familial adenomatous polyposis, MAP, APC, MUTY

    Human milk oligosaccharides in premature infants: absorption, excretion, and influence on the intestinal microbiota

    No full text
    BACKGROUND: Human milk oligosaccharides (HMOs) shape the intestinal microbiota in term infants. In premature infants, alterations in the intestinal microbiota (dysbiosis) are associated with risk of necrotizing enterocolitis and sepsis and the influence of HMOs on the microbiota is unclear. METHODS: Milk, urine, and stool specimens from 14 mother-premature infant dyads were investigated by mass spectrometry for HMO composition. The stools were analyzed by next-generation sequencing (NGS) to complement a previous analysis. RESULTS: Percentages of fucosylated and sialylated HMOs were highly variable between individuals but similar in urine, feces and milk within dyads. Differences in urine and fecal HMO composition suggest variability in absorption. Secretor status of the mother correlated with the urine and fecal content of specific HMO structures. Trends toward higher levels of Proteobacteria and lower levels of Firmicutes, were noted in premature infants of non-secretor mothers. Specific HMO structures in the milk, urine and feces were associated with alterations in fecal Proteobacteria and Firmicutes. CONCLUSION: HMOs may influence the intestinal microbiota in premature infants. Specific HMOs, for example those associated with secretor mothers, may have a protective effect by decreasing pathogens associated with sepsis and necrotizing enterocolitis while other HMOs may increase dysbiosis in this population
    corecore