5 research outputs found

    The intracellular Ig fold: a robust protein scaffold for the engineering of molecular recognition

    Get PDF
    Protein scaffolds that support molecular recognition have multiple applications in biotechnology. Thus, protein frames with robust structural cores but adaptable surface loops are in continued demand. Recently, notable progress has been made in the characterization of Ig domains of intracellular origin—in particular, modular components of the titin myofilament. These Ig belong to the I(intermediate)-type, are remarkably stable, highly soluble and undemanding to produce in the cytoplasm of Escherichia coli. Using the Z1 domain from titin as representative, we show that the I-Ig fold tolerates the drastic diversification of its CD loop, constituting an effective peptide display system. We examine the stability of CD-loop-grafted Z1-peptide chimeras using differential scanning fluorimetry, Fourier transform infrared spectroscopy and nuclear magnetic resonance and demonstrate that the introduction of bioreactive affinity binders in this position does not compromise the structural integrity of the domain. Further, the binding efficiency of the exogenous peptide sequences in Z1 is analyzed using pull-down assays and isothermal titration calorimetry. We show that an internally grafted, affinity FLAG tag is functional within the context of the fold, interacting with the anti-FLAG M2 antibody in solution and in affinity gel. Together, these data reveal the potential of the intracellular Ig scaffold for targeted functionalizatio

    Neuartige Tryptophan-Synthasen aus Hyperthermophilen: Charakterisierung der Enzyme aus Sulfolobus solfataricus

    Get PDF
    In der vorliegenden Arbeit wurde die Tryptophan Synthase aus Sulfolobus solfataricus strukturell und funktionell untersucht. Zu diesem Zweck wurden die Operon-ständigen Gene strpA und strpB2a, sowie das nicht Operon-ständige strpB2b getrennt in Escherichia coli exprimiert, die Genprodukte gereinigt und charakterisiert. sTrpB2a und sTrpB2b katalysieren mit vergleichbar hoher Effizienz die Synthese von Tryptophan aus Serin und Indol. Während sTrpB2b nicht mit sTrpA interagiert, bilden sTrpB2a und sTrpA einen schwachen, möglicherweise transienten Komplex. Durch diese Komplexbildung kommt es zu einer Aktivierung von sTrpA, eine Aktivierung von sTrpB2a konnte nicht nachgewiesen werden. Um die strukturellen Unterschiede zwischen sTrpB2a und sTrpB2b, die über eine Interaktion mit sTrpA entscheiden festzulegen, wurde die Kontaktfläche zwischen sTrpB2a und sTrpA mit bioinformatischen Methoden analysiert. Ausgewählte Positionen wurden einer gezielten Mutagenese unterworfen und die Proteinvarianten gereinigt und charakterisiert. Eine Deletion von drei Aminosäuren in sTrpB2a führte dabei zu einer deutlichen Schwächung der Komplexbildung mit sTrpA. Zusammenfassend lässt sich aus den Ergebnissen ein Schema für die Evolution der Tryptophan Synthase entwickeln. Ausgehend von einem frühen Vorläufer führte Genduplikation zur Existenz von zwei trpB-Genen, von denen eines im trp-Operon vorliegt. Aus dem im trp-Operon kodierten TrpB Protein entwickelte sich durch Optimierung der Kontaktfläche, ausgehend von einer schwachen Interaktion, der Tryptophan Synthase Komplex heutiger mesophiler Bakterien

    Evolution of multi-enzyme complexes: the case of tryptophan synthase.

    No full text
    The prototypical tryptophan synthase is a stable heterotetrameric alpha-betabeta-alpha complex. The constituting TrpA and TrpB1 subunits, which are encoded by neighboring genes in the trp operon, activate each other in a bi-directional manner. Recently, a novel class of TrpB2 proteins has been identified, whose members contain additional amino acids that might sterically prevent complex formation with TrpA. To test this hypothesis, we characterized the TrpA and TrpB proteins from Sulfolobus solfataricus. This hyperthermophilic archaeon does not contain a TrpB1 protein but instead contains two TrpB2 homologues that are encoded within (TrpB2i) and outside (TrpB2o) the trp operon. We find that TrpB2i and TrpA form a weak and transient complex during catalysis, with a uni-directional activation of TrpA by TrpB2i. In contrast, TrpB2o and TrpA do not form a detectable complex. These results suggest a model for the evolution of the tryptophan synthase in which TrpB2o, TrpB2i, and TrpB1 reflect the stepwise increase of TrpB affinity for TrpA and the refinement of functional subunit interaction, concomitant with the co-localization of the encoding genes in the trp operon

    Interconverting the catalytic activities of (betaalpha)(8)-barrel enzymes from different metabolic pathways: sequence requirements and molecular analysis.

    No full text
    The (betaalpha)(8)-barrel enzymes N'-[(5'-phosphoribosyl)formimino]-5-aminoimidazole-4-carboxamide ribonucleotide isomerase (tHisA) and imidazole glycerol phosphate synthase (tHisF) from Thermotoga maritima catalyze two successive reactions in the biosynthesis of histidine. In both enzymes, aspartate residues at the C-terminal end of beta-strand 1 (Asp8 in tHisA and Asp11 in tHisF) and beta-strand 5 (Asp127 in tHisA and Asp130 in tHisF) are essential for catalytic activity. It was demonstrated earlier that in tHisA the substitution of Asp127 by valine (tHisA-D127V) generates phosphoribosylanthranilate isomerase (TrpF) activity, a related (betaalpha)(8)-barrel enzyme participating in tryptophan biosynthesis. It is shown here that in tHisF the corresponding substitution of Asp130 by valine (tHisF-D130V) also generates TrpF activity. To determine the effectiveness of individual amino acid exchanges in these conversions, each of the 20 standard amino acid residues was introduced at position 127 of tHisA and 130 of tHisF by saturation random mutagenesis. The tHisA-D127X and tHisF-D130X variants with TrpF activity were identified by selection in vivo, and the proteins purified and characterized. The results obtained show that removal of the negatively charged carboxylate side-chain at the C-terminal end of beta-strand 5 is sufficient to establish TrpF activity in tHisA and tHisF, presumably because it allows the binding of the negatively charged TrpF substrate, phosphoribosylanthranilate. In contrast, the double mutants tHisA-D8N+D127V and tHisF-D11N+D130V did not show detectable activity, demonstrating that the aspartate residues at the C-terminal end of beta-strand 1 are essential for catalysis of the TrpF reaction. The ease with which TrpF activity can be established on both the tHisA and tHisF scaffolds supports the evolutionary relationship of these three enzymes and highlights the functional plasticity of the (betaalpha)(8)-barrel enzyme fold
    corecore