8 research outputs found

    Alumina-based composites reinforced with single-walled carbon nanotubes

    Get PDF
    Monolithic Al[2]O[3] ceramics and Al[2]O[3] - 3 vol% single-walled carbon nanotubes (SWCNTs) composites were prepared by spark plasma sintering. The influence of SWCNTs and sintering temperature on sintering behavior and mechanical properties were investigated. Nanotubes were relatively homogeneously distributed in the composite powder, although some agglomerates/bundles existed. It was found that SWCNTs addition retards slightly the sinterability of alumina by nanotubes hindering of particle rearrangement. The average microhardness of the composites was lower than that of Al[2]O[3] ceramics, but there were also high microhardness values of composites (20.41 GPa). The reduction in microhardness is explained in this paper. The average values of the fracture toughness (4.94 MPaΒ·m{1/2}) from the composite sintered at 1500 Β°C were approximately 6 % and 12 % higher than those from the Al[2]O[3] ceramics sintered at 1500 Β°C and 1600 Β°C, respectively. In addition, the analysis of the phase composition and the parameters of the crystal structure of the samples were made

    Spark plasma sintering of ceramic matrix composite based on alumina, reinforced by carbon nanotubes

    Get PDF
    Alumina composites reinforced with 3 vol.% multi-walled carbon nanotubes (MWCNTs) were prepared by spark plasma sintering (SPS). The influence of sintering temperature (1400-1600 Β°C) on the composites microstructure and mechanical properties was investigated. Microstructure observations of the composite shows that some CNTs site along alumina grains boundary, while others embed into the alumina grains and shows that CNTs bonded strongly with the alumina matrix contributing to fracture toughness and microhardness increase. MWCNTs reinforcing mechanisms including CNT pull-out and crack deflection were directly observed by scanning electron microscope (SEM). For Al[2]O[3]/CNT composite sintered at 1600 Β°C, fracture toughness and microhardness are 4.93 MPaβ€’m{1/2} and 23.26 GPa respectively

    Improving the Mechanical Properties of SiC-ceramics by means of Vacuum Electron-ion-plasma Alloying with Titanium

    Get PDF
    The investigation results of elemental and phase composition, state of defective substructure and microhardness of the surface layer of "film (Ti)/substrate (SiC-ceramics)" system (Ti film 0.5 [mu]m thick was deposited on the surface of SiC-ceramics) subjected to treatment with an intense pulsed low-energy electron beam (15 J/cm{2}, 200 [mu]s, 0.3 s{-1}, 20 pulses) are presented. It is shown that irradiation of the "film (Ti)/substrate (SiC-ceramics)" system with an electron beam is accompanied by the formation of multielement multiphase (SiC; TiC; Ti5Si[3]) surface layer having submicro- and nanocrystalline structure. Microhardness of the irradiated surface layer reaches a value of 74 GPa, that is twice the value of microhardness of SiC-ceramics (36 GPa)

    Improving the Mechanical Properties of SiC-ceramics by means of Vacuum Electron-ion-plasma Alloying with Titanium

    Get PDF
    The investigation results of elemental and phase composition, state of defective substructure and microhardness of the surface layer of "film (Ti)/substrate (SiC-ceramics)" system (Ti film 0.5 [mu]m thick was deposited on the surface of SiC-ceramics) subjected to treatment with an intense pulsed low-energy electron beam (15 J/cm{2}, 200 [mu]s, 0.3 s{-1}, 20 pulses) are presented. It is shown that irradiation of the "film (Ti)/substrate (SiC-ceramics)" system with an electron beam is accompanied by the formation of multielement multiphase (SiC; TiC; Ti5Si[3]) surface layer having submicro- and nanocrystalline structure. Microhardness of the irradiated surface layer reaches a value of 74 GPa, that is twice the value of microhardness of SiC-ceramics (36 GPa)

    Composition of Sedimentary Organic Matter across the Laptev Sea Shelf: Evidences from Rock-Eval Parameters and Molecular Indicators

    Get PDF
    Global warming in high latitudes causes destabilization of vulnerable permafrost deposits followed by massive thaw-release of organic carbon. Permafrost-derived carbon may be buried in the nearshore sediments, transported towards the deeper basins or degraded into the greenhouse gases, potentially initiating a positive feedback to climate change. In the present study, we aim to identify the sources, distribution and degradation state of organic matter (OM) stored in the surface sediments of the Laptev Sea (LS), which receives a large input of terrestrial carbon from both Lena River discharge and intense coastal erosion. We applied a suite of geochemical indicators including the Rock Eval parameters, traditionally used for the matured OM characterization, and terrestrial lipid biomarkers. In addition, we analyzed a comprehensive grain size data in order to assess hydrodynamic sedimentation regime across the LS shelf. Rock-Eval (RE) data characterize LS sedimentary OM with generally low hydrogen index (100–200 mg HC/g TOC) and oxygen index (200 and 300 CO2/g TOC) both increasing off to the continental slope. According to Tpeak values, there is a clear regional distinction between two groups (369–401 Β°C for the inner and mid shelf; 451–464 Β°C for the outer shelf). We suggest that permafrost-derived OM is traced across the shallow and mid depths with high Tpeak and slightly elevated HI values if compared to other Arctic continental margins. Molecular-based degradation indicators show a trend to more degraded terrestrial OC with increasing distance from the coast corroborating with RE results. However, we observed much less variation of the degradation markers down to the deeper sampling horizons, which supports the notion that the most active OM degradation in LS land-shelf system takes part during the cross-shelf transport, not while getting buried deeper

    Authigenic minerals in the bottom sediments from seeps of the Laptev Sea

    No full text
    ΠœΠ΅Ρ‚Π°Π½ΠΎΠ²Ρ‹Π΅ сипы ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΡˆΠΈΡ€ΠΎΠΊΠΎ распространСнным явлСниСм, Π½Π°Π±Π»ΡŽΠ΄Π°Π΅ΠΌΡ‹ΠΌ Π½Π° ΡˆΠ΅Π»ΡŒΡ„Π°Ρ… ΠΈ ΠΊΠΎΠ½Ρ‚ΠΈΠ½Π΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… склонах Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΠΈΡ… ΠΈ ΠΎΠΊΡ€Π°ΠΈΠ½Π½Ρ‹Ρ… ΠΌΠΎΡ€Π΅ΠΉ ΠΏΠΎ всСму ΠΌΠΈΡ€Ρƒ, Π² Ρ‚ΠΎΠΌ числС ΠΈ Π² ΠΌΠΎΡ€Π΅ Π›Π°ΠΏΡ‚Π΅Π²Ρ‹Ρ…. ΠšΠ»ΡŽΡ‡Π΅Π²Ρ‹ΠΌΠΈ биогСохимичСскими процСссами, ΠΏΡ€ΠΎΡ‚Π΅ΠΊΠ°ΡŽΡ‰ΠΈΠΌΠΈ Π² Π΄ΠΎΠ½Π½Ρ‹Ρ… осадках этих Ρ€Π°ΠΉΠΎΠ½ΠΎΠ², ΡΠ²Π»ΡΡŽΡ‚ΡΡ анаэробноС окислСниС ΠΌΠ΅Ρ‚Π°Π½Π° Π² сочСтании с Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ ΡΡƒΠ»ΡŒΡ„Π°Ρ‚Ρ€Π΅Π΄ΡƒΠΊΡ†ΠΈΠ΅ΠΉ. Оба этих процСсса ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΠΈΡ€ΡƒΡŽΡ‚ ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ спСцифичСской Π°ΡƒΡ‚ΠΈΠ³Π΅Π½Π½ΠΎΠΉ ΠΌΠΈΠ½Π΅Ρ€Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ. ЦСлью настоящСй Ρ€Π°Π±ΠΎΡ‚Ρ‹ являлось ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ Π°ΡƒΡ‚ΠΈΠ³Π΅Π½Π½Ρ‹Ρ… ΠΌΠΈΠ½Π΅Ρ€Π°Π»ΠΎΠ² Π΄ΠΎΠ½Π½Ρ‹Ρ… осадков с аномально высокими концСнтрациями ΠΌΠ΅Ρ‚Π°Π½Π°, ΠΎΡ‚ΠΎΠ±Ρ€Π°Π½Π½Ρ‹Ρ… Π½Π° Π΄Π²ΡƒΡ… сиповых участках Π² сСвСро-восточной части моря Π›Π°ΠΏΡ‚Π΅Π²Ρ‹Ρ…, для опрСдСлСния ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΎΠ² ΠΈΡ… ΠΈΠ΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ Π² Π΄Ρ€Π΅Π²Π½ΠΈΡ… осадочных ΠΏΠΎΡ€ΠΎΠ΄Π°Ρ…. ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ литологичСских ΠΈ минСралогичСских исслСдований Π΄ΠΎΠ½Π½Ρ‹Ρ… осадков. Π‘Ρ‹Π»ΠΎ установлСно, Ρ‡Ρ‚ΠΎ основными Π°ΡƒΡ‚ΠΈΠ³Π΅Π½Π½Ρ‹ΠΌΠΈ ΠΌΠΈΠ½Π΅Ρ€Π°Π»Π°ΠΌΠΈ Π² исслСдованных ΠΎΠ±Ρ€Π°Π·Ρ†Π°Ρ… Π΄ΠΎΠ½Π½Ρ‹Ρ… осадков, ΠΎΡ‚ΠΎΠ±Ρ€Π°Π½Π½Ρ‹Ρ… с Π΄Π²ΡƒΡ… сиповых участков Π² сСвСро-восточной части моря Π›Π°ΠΏΡ‚Π΅Π²Ρ‹Ρ…, ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΌΠ°Π³Π½Π΅Π·ΠΈΠ°Π»ΡŒΠ½Ρ‹ΠΉ ΠΊΠ°Π»ΡŒΡ†ΠΈΡ‚, гипс ΠΈ ΠΏΠΈΡ€ΠΈΡ‚. Разная спСцифика Π°ΡƒΡ‚ΠΈΠ³Π΅Π½Π½ΠΎΠΉ ΠΌΠΈΠ½Π΅Ρ€Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ, ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ, ΡƒΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ Π½Π° различия Π² Ρ€Π΅ΠΆΠΈΠΌΠ°Ρ… ΠΌΠΈΠ³Ρ€Π°Ρ†ΠΈΠΈ ΠΌΠ΅Ρ‚Π°Π½-содСрТащих Ρ„Π»ΡŽΠΈΠ΄ΠΎΠ² Π½Π° этих участках. Π’Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ΅ сниТСнии интСнсивности просачивания ΠΌΠ΅Ρ‚Π°Π½Π° Π² ΠΏΡ€Π΅Π΄Π΅Π»Π°Ρ… «восточного сипа» способствовало Π½Π°ΡΡ‹Ρ‰Π΅Π½ΠΈΡŽ ΠΏΠΎΡ€ΠΎΠ²ΠΎΠΉ Π²ΠΎΠ΄Ρ‹ ΠΈΠΎΠ½Π°ΠΌΠΈ SO[4]{2-} ΠΈ Ca{2+} ΠΈ, ΠΊΠ°ΠΊ слСдствиС, осаТдСнию гипса. БлизповСрхностноС ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΡΡƒΠ»ΡŒΡ„Π°Ρ‚-ΠΌΠ΅Ρ‚Π°Π½ΠΎΠ²ΠΎΠΉ Ρ‚Ρ€Π°Π½Π·ΠΈΡ‚Π½ΠΎΠΉ Π·ΠΎΠ½Ρ‹ Π² Β«Π·Π°ΠΏΠ°Π΄Π½ΠΎΠΌ сипС», обусловлСнноС высокими ΠΏΠΎΡ‚ΠΎΠΊΠ°ΠΌΠΈ ΠΌΠ΅Ρ‚Π°Π½Π°, благоприятствовало осаТдСнию магнСзиального ΠΊΠ°Π»ΡŒΡ†ΠΈΡ‚Π° Π² Π²Π΅Ρ€Ρ…Π½ΠΈΡ… Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Ρ… Π΄ΠΎΠ½Π½Ρ‹Ρ… осадков. ΠŸΡ€ΠΈΡΡƒΡ‚ΡΡ‚Π²ΠΈΠ΅ ΠΏΠΈΡ€ΠΈΡ‚Π° Π² осадках ΠΊΠ°ΠΊ восточного, Ρ‚Π°ΠΊ Π·Π°ΠΏΠ°Π΄Π½ΠΎΠ³ΠΎ сиповых участков являСтся ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎΠΌ активности процСсса Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ ΡΡƒΠ»ΡŒΡ„Π°Ρ‚-Ρ€Π΅Π΄ΡƒΠΊΡ†ΠΈΠΈ ΠΏΡ€ΠΈ анаэробном окислСнии ΠΌΠ΅Ρ‚Π°Π½Π°.Methane seeps is a widespread phenomenon observed on the shelves and continental slopes of inland and border seas around the world, including the Laptev Sea. Key biogeochemical processes occurring in the bottom sediments of these areas are the anaerobic oxidation of methane in combination with bacterial sulfate reduction. Both of these processes control the formation of specific autigenic mineralization. The aim of this work was to study authigenic minerals of bottom sediments with abnormally high concentrations of methane taken from two seeps in the north-eastern part of the Laptev Sea to determine the signs of their identification in ancient sedimentary rocks. The paper presents the results of lithological and mineralogical studies of bottom sediments. It was found that magnesium calcite, gypsum and pyrite are the main authigenic minerals in the studied samples of bottom sediments taken from two seeps in the north-eastern part of the Laptev Sea. The different specifics of authigenic mineralization indicate differences in conditions of migration of methane-containing fluids in these areas, presumably. Temporary decrease in the rate of methane seepage within the Β«eastern seepΒ» contributed to the saturation of pore water with SO[4]{2-} and Ca{2+} and, as a consequence, gypsum deposition. The near-surface position of the sulfate-methane transition zone in the Β«western seepΒ» due to high methane flows favored the precipitation of magnesian calcite in the upper horizons of bottom sediments. The presence of pyrite in sediments of eastern and western seep is evidence of the activity of the bacterial sulfate reduction during anaerobic methane oxidation

    Identifying sources of organic carbon in surface sediments of Laptev Sea shelf using a Rock-Eval approach

    No full text
    ΠΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ исслСдования обусловлСна Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒΡŽ всСстороннСго изучСния процСссов, отвСтствСнных Π·Π° измСнСния биогСохимичСского Ρ€Π΅ΠΆΠΈΠΌΠ° арктичСского Ρ€Π΅Π³ΠΈΠΎΠ½Π°. Π£Π²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ Ρ‚Π΅ΠΌΠΏΠΎΠ² Π΄Π΅Π³Ρ€Π°Π΄Π°Ρ†ΠΈΠΈ ΠΏΡ€ΠΈΠ±Ρ€Π΅ΠΆΠ½ΠΎΠΉ ΠΈ ΠΏΠΎΠ΄Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΌΠ΅Ρ€Π·Π»ΠΎΡ‚Ρ‹ Π½Π° Восточно-Бибирском ΡˆΠ΅Π»ΡŒΡ„Π΅ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ Π²ΠΎΠ²Π»Π΅Ρ‡Π΅Π½ΠΈΡŽ Π² соврСмСнный биогСохимичСский Ρ†ΠΈΠΊΠ» большого объСма Ρ€Π΅ΠΌΠΎΠ±ΠΈΠ»ΠΈΠ·ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ органичСского ΡƒΠ³Π»Π΅Ρ€ΠΎΠ΄Π°. Π˜Π·ΡƒΡ‡Π΅Π½ΠΈΠ΅ особСнностСй Π΅Π³ΠΎ транспорта ΠΈ прСобразования Π² систСмС ΡΡƒΡˆΠ°-ΡˆΠ΅Π»ΡŒΡ„ ΠΈΠ³Ρ€Π°Π΅Ρ‚ Π²Π°ΠΆΠ½ΡƒΡŽ Ρ€ΠΎΠ»ΡŒ для ΠΎΡ†Π΅Π½ΠΊΠΈ функционирования ΠΊΡ€Π°ΠΉΠ½Π΅ Ρ…Ρ€ΡƒΠΏΠΊΠΎΠΉ арктичСской экосистСмы. ЦСль: ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ гСохимичСских характСристик органичСского вСщСства, прослСТиваСмых ΠΏΠΎ ΠΏΡ€ΠΎΡ„ΠΈΠ»ΡŽ ΠΎΡ‚ Π±Π΅Ρ€Π΅Π³ΠΎΠ²ΠΎΠΉ Π·ΠΎΠ½Ρ‹ ΠΊ ΠΊΠΎΠ½Ρ‚ΠΈΠ½Π΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΌΡƒ склону моря Π›Π°ΠΏΡ‚Π΅Π²Ρ‹Ρ… с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° Rock-Eval ΠΈ ΠΎΡ†Π΅Π½ΠΊΠ° ΠΈΡ… взаимосвязи с литологичСскими свойствами Π²ΠΌΠ΅Ρ‰Π°ΡŽΡ‰ΠΈΡ… осадков. ΠžΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠΌ исслСдования явились ΠΏΡ€ΠΎΠ±Ρ‹ Π΄ΠΎΠ½Π½Ρ‹Ρ… осадков, взятыС с повСрхностного Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π° (0-2 см). ΠžΡ‚Π±ΠΎΡ€ ΠΏΡ€ΠΎΠ± проводился Π² морских арктичСских экспСдициях 2018-2019 Π³Π³. Π½Π° НИБ «АкадСмик ΠœΡΡ‚ΠΈΡΠ»Π°Π² ΠšΠ΅Π»Π΄Ρ‹ΡˆΒ». Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. На основС Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² пиролитичСского Π°Π½Π°Π»ΠΈΠ·Π° Π΄Π°Π½Π° гСохимичСская характСристика органичСского вСщСства, содСрТащСгося Π² Π΄ΠΎΠ½Π½Ρ‹Ρ… осадках моря Π›Π°ΠΏΡ‚Π΅Π²Ρ‹Ρ…. ΠžΡ€Π³Π°Π½ΠΈΡ‡Π΅ΡΠΊΠΎΠ΅ вСщСство, экспортируСмоС с Ρ€Π΅Ρ‡Π½Ρ‹ΠΌ стоком ΠΈ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Π°ΠΌΠΈ Π±Π΅Ρ€Π΅Π³ΠΎΠ²ΠΎΠΉ эрозии, характСризуСтся ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π½ΠΈΠ·ΠΊΠΈΠΌ кислородным (OI) ΠΈ Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π½Ρ‹ΠΌ (HI) индСксами Π² ΠΏΡ€ΠΈΠ±Ρ€Π΅ΠΆΠ½ΠΎΠΉ Π·ΠΎΠ½Π΅ ΠΈ Π½Π° Π³Π»ΡƒΠ±ΠΈΠ½Π°Ρ… Π΄ΠΎ Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΠΈΡ… дСсятков ΠΌΠ΅Ρ‚Ρ€ΠΎΠ². Π’ Ρ€Π°ΠΉΠΎΠ½Π΅ срСднСго ΡˆΠ΅Π»ΡŒΡ„Π° сущСствСнноС влияниС Π½Π° состав органичСского вСщСства, ΠΏΠΎ всСй видимости, ΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ снос осадочного вСщСства с Новосибирских островов, Π³Π΄Π΅ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎ Π΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‚ Ρ‚Π΅Ρ€ΠΌΠΎΠ°Π±Ρ€Π°Π·ΠΈΠΎΠ½Π½Ρ‹Π΅ процСссы (сниТСниС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ HI ΠΈ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ OI). Высказано ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅, Ρ‡Ρ‚ΠΎ для ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΎΠ², выносимых Ρ€Π΅Ρ‡Π½Ρ‹ΠΌ стоком, ΠΈ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΎΠ² эрозии Π±Π΅Ρ€Π΅Π³ΠΎΠ² Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½Ρ‹ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ пиролитичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹, опрСдСляСмыС ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Rock-Eval (Π² частности, значСния HI, OI ΠΈ Tpeak).An increasing rate of degradation of coastal and subsea permafrost leads to remobilization of huge amounts of organic carbon. To know how this remobilized carbon behaves while being transported through the land-shelf system is crucially important for understanding an extremely fragile Arctic ecosystem. This study is aimed at tracing the geochemical signals of organic matter along the profile from the coastal zone to the continental slope of the Laptev Sea, using the Rock-Eval approach. We investigated surface sediment samples obtained during the Arctic marine expeditions of 2018-2019 on the R/V "Akademik Mstislav Keldysh". The most active oxidation of organic matter, exported with river runoff and products of coastal erosion, occurs in the coastal zone at a depth of several tens of meters. A significant effect on the organic matter composition is exerted by the sediment export from Novosibirsk Islands eroding coastlines. We assume that various products carried by river runoff and coastal erosion are characterized by various signatures detected by the Rock-Eval method (e.g., the OI and Tpeak values). It is also shown that the mineral matrix does not seem to provide a first-order control on preventing organic matter degradation during transport from the coastal zone to deep-sea basins
    corecore