15 research outputs found

    Neuroinflammation as common denominator in heart failure associated mental dysfunction:Studies in animal models

    Get PDF
    Patients with cardiovascular disease have a higher risk to develop mental dysfunction, like depression or memory impairment. To better treat this group of patients we need to better understand the causes of this relationship. Previous studies have indicated that inflammation plays a role in both conditions. In our study we have studied (neuro)inflammation and behavioural changes in animal models of heart attack (myocardial infarction, MI). We specifically looked at microglia and the two inflammatory markers tumour necrosis factor alpha (TNF-α) and neutrophil gelatinase-associated lipocalin (NGAL). Microglia are immune cells in the brain, we know they are involved in conditions such as Alzheimer’s disease and depression. TNF-α is an inflammatory marker that is raised in the blood of patients after MI and also in depression. NGAL is another inflammatory marker that is raised in the blood of patient with heart failure and is associated with symptoms of depression in heart failure patients. In our mouse model of MI we found that TNF-α was raised in the brain after MI, we also found localized activation of microglia. In rats NGAL was raised after MI and NGAL levels were associated with behavioral changes. Microglia activation was also associated with behavioural changes. A final study in a model for abdominal surgery also showed changes in microglia and NGAL, indicating these are not specific for MI, but more likely a general response to physical damage

    Vaccination prevented short-term memory loss, but deteriorated long-term spatial memory in Alzheimer's disease mice, independent of amyloid-β pathology

    Get PDF
    Background: Soluble oligomeric amyloid-β (Aβ), rather than Aβ plaques, seems to be the culprit in Alzheimer's disease (AD). Accordingly, a new concept vaccine of small cyclic peptide conjugates, selectively targeting oligomeric Aβ, has been developed.Objective: Study the therapeutic potential of this new vaccine in a mouse model for AD.Methods: J20 mice, overexpressing human amyloid precursor protein, were validated for an AD-like phenotype. Then, J20 mice were vaccinated at 2, 3, and 4 months of age and AD phenotype was evaluated at 6, 9, and 12 months of age; or at 9, 10, and 11 months with evaluation at 12 months. Effects on Aβ pathology were studied by plaque load (immunohistochemistry; 6E10) and antibody titers against Aβ (ELISA). AD behavioral phenotype was evaluated by performance in a battery of cognitive tests.Results: J20 mice displayed age-related Aβ plaque development and an AD-like behavioral phenotype. A consistent antibody response to the cyclic peptides was, however, not extended to Aβ, leaving plaque load unaffected. Nevertheless, immunization at young ages prevented working- and short-term spatial memory loss, but deteriorated long-term spatial learning and memory, at 12 months of age. Immunization at later ages did not affect any measured parameter.Conclusion: J20 mice provide a relevant model for AD to study potential anti-Aβ treatment. Early vaccination prevented short-term memory loss at later ages, but deteriorated long-term spatial memory, however without affecting Aβ pathology. Later vaccination had no effects, but optimal timing may require further investigation.</p

    Lipocalin 2 as a link between ageing, risk factor conditions and age-related brain diseases

    Get PDF
    Chronic (neuro)inflammation plays an important role in many age-related central nervous system (CNS) diseases, including Alzheimer's disease, Parkinson's disease and vascular dementia. Inflammation also characterizes many conditions that form a risk factor for these CNS disorders, such as physical inactivity, obesity and cardiovascular disease. Lipocalin 2 (Lcn2) is an inflammatory protein shown to be involved in different age-related CNS diseases, as well as risk factor conditions thereof. Lcn2 expression is increased in the periphery and the brain in different age-related CNS diseases and also their risk factor conditions. Experimental studies indicate that Lcn2 contributes to various neuropathophysiological processes of age-related CNS diseases, including exacerbated neuroinflammation, cell death and iron dysregulation, which may negatively impact cognitive function. We hypothesize that increased Lcn2 levels as a result of age-related risk factor conditions may sensitize the brain and increase the risk to develop age-related CNS diseases. In this review we first provide a comprehensive overview of the known functions of Lcn2, and its effects in the CNS. Subsequently, this review explores Lcn2 as a potential (neuro)inflammatory link between different risk factor conditions and the development of age-related CNS disorders. Altogether, evidence convincingly indicates Lcn2 as a key constituent in ageing and age-related brain diseases

    Neutrophil gelatinase-associated lipocalin and microglial activity are associated with distinct postoperative behavioral changes in rats

    Get PDF
    Neutrophil gelatinase-associated lipocalin (NGAL) has recently gained interest as a marker for neuroinflammation and associated behavioral dysfunction. We aimed to explore the link between NGAL and behavior in a rat model of postoperative cognitive dysfunction (POCD). Material collected in two previous studies on POCD was analyzed and associated with outcomes for exploratory behavior and spatial learning. Plasma and hippocampal NGAL and microglial activity were analyzed. Pearson's correlations and backward linear regression were performed to study the associations between behavioral parameters, NGAL concentrations, and microglial activity. Plasma and hippocampal NGAL were increased following surgery. Plasma NGAL was associated with impaired spatial learning only, microglial activity was associated with exploratory behavior only, while hippocampal NGAL was associated with both behavioral aspects. Spatial learning was best predicted by a model containing plasma NGAL concentrations and hippocampal microglial activity. NGAL may serve as a sensitive marker in connecting the peripheral inflammatory state to POCD, while postoperative changes in exploratory behavior are better reflected by hippocampal neuroinflammation. These findings warrant further exploration in the role of NGAL in development of postoperative behavioral deficits

    Differences in the association between behavior and neutrophil gelatinase-associated lipocalin in male and female rats after coronary artery ligation

    No full text
    Heart failure is associated with an increased risk of developing depression and cognitive dysfunction, which negatively affects prognosis. Plasma levels of neutrophil gelatinase associated lipocalin (NGAL) are increased in heart failure and depression. Moreover, NGAL levels are associated with depression in heart failure patients. Since women are at a higher risk of developing comorbid depression with heart failure, the aim of this study was to examine sex differences in the link between NGAL and behavior in a rat model of heart failure. In young adult male and female Wistar rats, myocardial infarction (MI) was induced by means of coronary artery ligation, while control rats received sham surgery. We analyzed aspects of cognition and depression/anxiety using various behavioral tests starting three weeks after surgery. Hemodynamic measurements were performed and hearts and lungs were weighed. NGAL levels in plasma, cerebrospinal fluid (CSF) and brain tissue were analyzed. MI induced impairment in cardiac contractility and relaxation, and an increase in lung weight NGAL correlated with signs of heart failure in male, but not female rats. Male MI rats displayed cognitive problems, but not depressive-like or anxiety-like behavior. No behavioral effects of MI were observed in female rats. Plasma NGAL levels were higher in male than female rats with higher concentrations in MI compared to sham. CSF NGAL was higher in MI rats compared to sham and higher in males compared to females. The number of NGAL positive cells in the paraventricular nucleus of the hypothalamus (PVN) was only increased in male MI rats. In male, but not in female rats, NGAL levels correlated with depressive-like behavior and cognitive dysfunction. Data indicate that while MI increased NGAL levels in plasma, CSF and PVN, correlations of NGAL with behavior are sex-specific, but independent of whether sham or MI surgery was performed. This suggests that inflammatory processes related to thorax surgery and their potential effects on depressive-like behavior and cognition may be sex-specific. (C) 2016 Elsevier Inc. All rights reserved

    The role of neutrophil gelatinase associated lipocalin (NGAL) as biological constituent linking depression and cardiovascular disease

    Get PDF
    Depression is more common in patients with cardiovascular disease than in the general population. Conversely, depression is a risk factor for developing cardiovascular disease. Comorbidity of these two pathologies worsens prognosis. Several mechanisms have been indicated in the link between cardiovascular disease and depression, including inflammation. Systemic inflammation can have long-lasting effects on the central nervous system, which could be associated with depression. NGAL is an inflammatory marker and elevated plasma levels are associated with both cardiovascular disease and depression. While patients with depression show elevated NGAL levels, in patients with comorbid heart failure, NGAL levels are significantly higher and associated with depression scores. Systemic inflammation evokes NGAL expression in the brain. This is considered a proinflammatory effect as it is involved in microglia activation and reactive astrocytosis. Animal studies support a direct link between NGAL and depression/anxiety associated behavior. In this review we focus on the role of NGAL in linking depression and cardiovascular disease
    corecore