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Depression is more common in patients with cardiovascular disease than in the general population. Con-
versely, depression is a risk factor for developing cardiovascular disease. Comorbidity of these two
pathologies worsens prognosis. Several mechanisms have been indicated in the link between cardiovas-
cular disease and depression, including inflammation. Systemic inflammation can have long-lasting
effects on the central nervous system, which could be associated with depression. NGAL is an inflamma-
tory marker and elevated plasma levels are associated with both cardiovascular disease and depression.
While patients with depression show elevated NGAL levels, in patients with comorbid heart failure, NGAL
levels are significantly higher and associated with depression scores. Systemic inflammation evokes
NGAL expression in the brain. This is considered a proinflammatory effect as it is involved in microglia
activation and reactive astrocytosis. Animal studies support a direct link between NGAL and depres-
sion/anxiety associated behavior. In this review we focus on the role of NGAL in linking depression
and cardiovascular disease.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction

Cardiovascular disease and major depression are two of the most
prevalent illnesses in the western world, affecting a large part of the
population and leading to a high economic burden. Cardiovascular
disease is the leading cause of death world-wide, with more than
1 out of 3 American adults suffering from at least one type of CVD
(Writing Group Members et al., 2010), while anti-depressant med-
ication is one of the most prescribed types of drugs. Around 60% of
patients with depression report severe or very severe impairment in
their daily life, which includes social interactions and work (Kessler
et al., 2003). The comorbidity of cardiovascular disease and depres-
sion is associated with worse prognosis compared with either car-
diovascular disease or depression alone. In recent years there has
been more interest in the link between cardiovascular disease and
depression. It is reported that patients with cardiovascular disease,
including heart failure and acute myocardial infarction (AMI), have
an increased risk of developing depression. On the other hand,
patients suffering from depression are more likely to develop car-
diovascular disease, including a myocardial infarction. Mechanisti-
cally it is still unclear what links these distinct pathologies,
although inflammation has been mentioned as a possible
mechanism. Cardiovascular disease and depression share an
increased expression of pro-inflammatory cytokines. For some of
these, a relationship with both depression and heart disease is
reported in the literature (Pasic et al., 2003). Recently, it was found
that neutrophil gelatinase associated lipocalin (NGAL), also referred
to as lipocalin-2 (Lcn-2), has characteristics of a (neuro)inflamma-
tory constituent. Subsequently, it was suggested that NGAL fulfills
a possible role in both, cardiovascular disease and depression. Fur-
thermore, NGAL is reported an independent predictor of mortality
in heart failure (van Deursen et al., 2014). We recently showed that
NGAL is elevated in relation to late life depression (Naude et al.,
2013). Moreover, NGAL is associated with depression scores in
heart failure patients, independent of measures for cardiac- or renal
dysfunction (Naude et al., 2014). This review focusses on the
putative mutual interaction between cardiovascular disease and
depression and the potential coupling role of NGAL.

1.1. Cardiovascular disease increases the prevalence of depression

Patients suffering from heart failure commonly have other
comorbidities. Depression is a comorbid illness in heart disease,
which is of particular interest because of its negative impact on
the quality of life and prognosis. Up to 65% of patients recovering
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from myocardial infarction show symptoms associated with
depression (Carney et al., 1997), and 15–22% of myocardial infarc-
tion patients can be categorized as having major depression (Hance
et al., 1996; Frasure-Smith et al., 1993; Schleifer et al., 1989). Both
clinical depression and elevated levels of subclinical depressive
symptoms are common in the weeks following acute coronary syn-
drome (Thombs et al., 2006) and predict recurrent cardiac events
and cardiovascular mortality (Meijer et al., 2011).

However, not only the acute phases of cardiovascular disease,
also chronic heart failure is associated with an increased preva-
lence of depression; with up to 40% of heart failure patients expe-
riencing symptoms of depression (Shimizu et al., 2013; Sherwood
et al., 2007; Rutledge et al., 2006).

It is important to recognize the heterogenic characteristics of
depression. General depression can be categorized as somatic/affec-
tive (with symptoms including fatigue and psychomotor problems)
or cognitive/affective (with symptoms including depressed mood
and feelings of worthlessness or guilt). It is worth mentioning that
compared to depressed patients without heart disease, depressed
patients with heart disease suffer from somatic/affective-rather
than from cognitive/affective symptoms of depression (Holzapfel
et al., 2008). Moreover, in heart failure patients, inflammation is
associated with somatic symptoms of depression, but not with cog-
nitive/affective symptoms (Kupper et al., 2012).

Depression in heart failure patients often goes unrecognized,
because of overlapping symptoms of depression and heart failure,
and is regarded as the ‘‘natural’’ response to a life threatening con-
dition. Nevertheless, comorbid depression in heart failure patients
jeopardizes quality of life, adherence to therapy and life style
advises, and hence cardiovascular prognosis.

1.2. Depression increases the prevalence of cardiovascular disease

Major depression is a common disorder with an estimated life-
time prevalence of 8.3–16.2% in the United States (Kessler et al.,
2003; Bourdon et al., 1992). Data from epidemiological studies
clearly suggest that depression is an independent risk factor for
acute myocardial infarction and heart diseases in general. Patients
with depression have a greater risk of mortality due to cardiovas-
cular related conditions up to 10 years after the diagnosis (Barefoot
and Schroll, 1996). This finding holds for mild- as well as major
depression (Penninx et al., 2001).

In addition, prospective studies with depressed individuals
show that a history of major depressive episodes is associated with
a higher risk of myocardial infarction, even after correction for
major coronary risk factors (Pereira et al., 2013). A systemic review
calculated a pooled relative risk of 1.64 for developing coronary
heart disease in patients with major depression (Rugulies, 2002).
The relative risk for patients with major depression for the devel-
opment of ischemic heart disease was 1.56 (Charlson et al.,
2013). A recent follow-up study of a large population-based study
also found depression to be a risk factor for the development of
heart failure (Gustad et al., 2014). Furthermore, depressed patients
that adhere to their medication regimen have a 26% lower risk of
hospitalizations for coronary artery disease than depressed
patients that do not adhere to their treatment (Cooper et al., 2014).

1.3. The influence of depression on prognosis in patients with CVD

In the past years, the co-morbidity of heart disease and depres-
sion has been thoroughly investigated. Numerous studies have
reported worsened prognosis in patients with cardiovascular dis-
ease when depression is present.

In patients who already have developed congestive heart dis-
ease (CHD), the impact of depression is of great importance. A
prospective population-based cohort study, investigated age-
and sex-adjusted hazard ratios for death from all causes. Results
from this study show that patients with both depression and
CHD have a higher mortality than patients with either depression
or CHD alone (Nabi et al., 2010). This is in concordance with the
study by Sherwood et al., showing that heart failure patients with
depression display 2–3 times higher mortality when compared
with heart failure patients without depression (Sherwood et al.,
2007).

As mentioned earlier, depression can be classified into cogni-
tive/affective depression and somatic/affective depression. The
type of depression experienced by patients with cardiovascular
disease was reported to affect prognosis. In patients with stable
coronary heart disease, somatic symptoms of depression are asso-
ciated with cardiac events, while there is no significant association
of cognitive symptoms of depression with cardiac prognosis (Hoen
et al., 2010). Later the same results were found for somatic symp-
toms of depression in patients that suffered acute myocardial
infarction (Roest et al., 2013). Additionally, in chronic heart failure
somatic symptoms of depression are associated with all-cause
mortality, while cognitive symptoms of depression are not
(Schiffer et al., 2009). In accordance, a very recent meta-analysis,
including more than 11,000 subjects, showed that in fully adjusted
analyses only somatic/affective symptoms are significantly associ-
ated with adverse prognosis (de Miranda Azevedo et al., 2014).

While optimal treatment of cardiovascular disease usually has
no major effects on depression, treatment of depression in these
patients, though associated with modest improvement in depres-
sive symptoms, does not improve cardiac outcome (Thombs
et al., 2008). This may indicate a common denominator rather than
a causal relationship for cardiovascular disease and depression.

1.4. Inflammation as a link between depression and cardiovascular
disease

Different putative mechanisms have been proposed as common
denominator to link cardiovascular disease to depression. Besides
psychological factors and behavioral factors (Whooley et al.,
2008; Ziegelstein et al., 2000), endothelial dysfunction (Celano
and Huffman, 2011; Pizzi et al., 2009), increased platelet activity
(Celano and Huffman, 2011; Schins et al., 2004), autonomic ner-
vous system dysfunction (Dao et al., 2010; Kop et al., 2010) and
inflammation are possible factors having a role in the interaction
between cardiovascular disease and depression. For this review
we will focus on inflammation. In Fig. 1 the role of inflammation
as a common factor between cardiovascular disease and depres-
sion is depicted (Fig. 1).

An increase in circulating pro-inflammatory cytokines has been
detected in patients with cardiovascular disease as well as patients
with major depression. In AMI patients, an inflammatory response
is required for proper scar formation and is initiated immediately
after the event (Frangogiannis, 2006). As early as 1978 it was
reported that C-reactive protein levels in the plasma are elevated
hours after myocardial infarction (Kushner et al., 1978). Other
cytokines that were found to be raised in the plasma of acute MI
patients are TNF-a, IL-2, IL-10, IL-6 and IL-1b (Mizia-Stec et al.,
2003; Blum et al., 1994; Basaran et al., 1993; Ikeda et al., 1992).
Elevated levels of plasma cytokines are, however, not restricted
to acute coronary syndromes. In chronic heart failure patients,
cytokines including TNF-a and IL-6 (Munger et al., 1996; Levine
et al., 1990) are also elevated.

With regard to depression, an increase in circulating cytokines
is observed in clinical studies. The cytokines that were most con-
sistently found to be elevated across different studies with
depressed patients are TNF-a, IL-6, IL-1b, IL-2 and IFN-c (Dowlati
et al., 2010; Simon et al., 2008; Pavon et al., 2006; Brambilla and
Maggioni, 1998).



Fig. 1. Pathophysiological factors in cardiovascular disease and depression. Inflam-
mation has been described as a factor in both cardiovascular disease as well as
depression.
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What stands out in these findings is that there seems to be an
overlap in cytokines elevated in cardiovascular disease and depres-
sion, as reviewed by Pasic et al. (2003). Several studies have also
investigated cytokine expression profiles in patients that have both
cardiovascular disease and depression. In heart failure patients IL-6
and CRP levels are associated with depression (Johansson et al.,
2011). TNF-a levels are associated with depression score in heart
failure patients as well (Ferketich et al., 2005). Additionally, in
patients admitted for MI higher TNF-a levels were found in those
who were depressed compared to non-depressed MI patients
(Shang et al., 2014).

Animal studies show depressive symptoms weeks after experi-
mental myocardial infarction (Frey et al., 2014; Grippo et al., 2003;
Schoemaker and Smits, 1994) that can be blocked by the TNF-a
blocker Etanercept (Grippo et al., 2003).

Several publications advocate the importance of inflammation
in the interaction between cardiovascular disease and depression
(Kupper et al., 2012; Kop et al., 2010; Andrei et al., 2007). In brief,
following an AMI, inflammation in the brain was demonstrated,
especially in the paraventricular nucleus of the hypothalamus
(PVN), a region involved in control of the sympathetic nervous sys-
tem and the expression of the hormones vasopressin and oxytocin.
Also, the PVN is important in cardiovascular homeostasis (Li and
Patel, 2003). The cytokines TNF-a and IL1-beta were increased in
the hypothalamus of rats, both at mRNA and protein level, after
MI (Francis et al., 2004). Moreover, MI in rats induces focal leakage
of the BBB (Van der Werf et al., 1995), which can be mimicked by
intravenous TNF-a infusion in an experimental setting (Ter Horst
et al., 1997). Hence, peripheral inflammatory mediators may
facilitate entry of inflammatory mediators through leakage of the
endothelium lining the BBB, and subsequently induce neuroin-
flammation (Liu et al., 2013; Abbott et al., 2010). TNF-a, by influ-
encing the permeability of the BBB, induces leakage of the BBB
and neuroinflammation. The neuroinflammatory reaction may
cause depression, both by affecting monoamines, tryptophan and
kynurenine production as well as by affecting the HPA axis, which
is thought to contribute to depression (Jones and Thomsen, 2013;
Raison et al., 2006). Indeed, TNF-a infusion can induce depres-
sive-like behavior in mice (Kaster et al., 2012).

In the rat, TNF-a expression in the heart, at mRNA as well as pro-
tein level, peaked at 7 days after MI and subsequently declined. Cells
expressing this TNF-a were primarily inflammatory cells involved in
the repairing of cardiac tissue (Lu et al., 2004). Interestingly, plasma
TNF-a levels remained elevated, at least up to 4 weeks after MI
(Kang et al., 2009). This finding indicates that the elevated plasma
TNF-a levels seen in heart failure (after MI) may not originate from
the inflamed infarcted heart. Moreover, an MI in rats leads to an
increase in microglia activation in the PVN (Dworak et al., 2012;
Badoer, 2010; Rana et al., 2010). Microglia activation, although
slightly higher at 1 week, was substantially and persistently
increased up to 16 weeks after MI (Dworak et al., 2012). Comparing
the time course of TNF-a levels and microglia activation, it seems
that the cytokine-induced neuroinflammatory response in the brain
induces structurally altered activated microglia. In a recent review,
Quan (2014) thoroughly described the above process of an initially
local inflammatory response progressing into systemic inflamma-
tion as well as neuroinflammation, eventually leading to neuronal
damage and psychological disorders (Quan, 2014).

2. Neutrophil Gelatinase-Associated Lipocalin (NGAL)

Neutrophil Gelatinase-Associated Lipocalin (NGAL), also known
in humans as lipocalin-2 (Lcn-2), uterocalin, siderocalin and in the
mouse as 24p3, is a 25 kDa glycoprotein originally purified from
human neutrophils (Kjeldsen et al., 2000; Kjeldsen et al., 1993).
NGAL was found constitutively synthesized during a narrow win-
dow of maturation in the granulocyte precursors in the bone mar-
row, and is stored in specific granules of mature neutrophils in
complex with gelatinase (Kjeldsen et al., 1994), but has since been
described in a variety of cell-types. Other cells known to produce
NGAL are renal cells (Langelueddecke et al., 2012), endothelial cells
(Hamzic et al., 2013), hepatic cells (Borkham-Kamphorst et al.,
2011), cardiomyocytes (Yndestad et al., 2009) and neurons
(Naude et al., 2012). NGAL is involved in anti-microbial defense
by sequestering iron; in vitro studies have demonstrated that NGAL
has a bacteriostatic effect via the binding of siderophore molecules,
thereby restricting the availability of iron to bacteria (Goetz et al.,
2002). A study using NGAL knock-out mice supports this effect, as
these mice showed a much higher susceptibility to bacterial infec-
tions than wild-type (WT) controls (Berger et al., 2006). More
recently, NGAL was identified as a biomarker for acute kidney
injury, since, NGAL is released rapidly in response to kidney tubu-
lar damage (Di Grande et al., 2009; Parikh and Devarajan, 2008). In
respect to research about NGAL as a biomarker for renal injury,
raised NGAL levels are also thought to predict renal failure in
patients with heart failure (Mortara et al., 2013; Yndestad et al.,
2009). NGAL was also associated with mortality in heart failure
patients, with or without renal disease (van Deursen et al., 2014).
In animal experiments, NGAL production is increased in spared
myocytes after MI. This augmented NGAL production persists at
least for 6 weeks (Yndestad et al., 2009). They also found that in
isolated rat cardiomyocytes NGAL production increases following
stimulation with various inflammation-associated agents, includ-
ing endothelin-1, interleuking-1b and TNF-a (Yndestad et al.,
2009).

More recently, our group reported that increased circulating
NGAL levels are significantly associated with depression in the
elderly (Naude et al., 2013), as well as symptoms of depression
in heart failure patients (Naude et al., 2014).

The effects of NGAL are mediated by two putative receptors:
24p3R and megalin, with distinct functions.

2.1. Receptors for NGAL

2.1.1. 24p3R
The 24p3R is one of the known receptors for NGAL. Immunoblot

analysis on a panel of murine tissues revealed that 24p3R was
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widely expressed in different organs, including the heart and brain
(Devireddy et al., 2005). The 24p3R is widely expressed throughout
the heart, but particularly on the surface of cardiomyocytes (Ding
et al., 2010). This finding is of special interest because cardiomyo-
cytes are also considered as the most important source for NGAL in
both experimental and clinical HF, as previously discussed
(Yndestad et al., 2009). Expression of 24p3R in mice (Ip et al.,
2011) revealed high expression levels of the receptor in the brain
under physiological conditions, with the highest levels in the cho-
roid plexus and the dentate gyrus of the hippocampus. By combin-
ing in situ hybridization with immunohistochemistry that allowed
for the identification of neurons (NeuN), astrocytes (GFAP), microg-
lia (IBA-1) and endothelium (lectin), cellular sources of NGAL and
24p3R RNA transcripts were determined. Whereas no NGAL RNA
signal was detectable in neurons, 24p3R RNA was expressed
almost exclusively in neurons in the brain, specifically and exten-
sively expressed in cortical neurons, hippocampal dentate gyrus,
granule neurons and Purkinje neurons of the cerebellum. Further-
more, high levels of 24p3R RNA are present in the choroid plexus.
Besides expression on neurons, 24p3R also seems to be expressed
on the surface of microglia (Lee et al., 2007). High NGAL RNA
hybridization signal was found in cells in close proximity to neu-
rons, presumably microglial cells, as well as vascular endothelium
(Ip et al., 2011). Lee et al., also found mRNA expression of 24p3R
and megalin, the other known receptor for NGAL (see below), in
neuronal cell cultures (Lee et al., 2012).

In contrast to the observed increase in NGAL, which expression
is increased upon LPS administration, expression of 24p3R was not
altered by LPS (Lee et al., 2012; Ip et al., 2011). Functioning of NGAL
via 24p3R is dependent on whether iron is bound to NGAL or not.
In the case of iron-lacking NGAL, binding to 24p3R results in the
uptake of NGAL and subsequent decrease of intracellular iron lev-
els, followed by an upregulation of the protein Bcl-2-interacting
mediator of cell death (BIM), which is a potent inducer of apopto-
sis. When NGAL is bound to iron (Apo-NGAL), binding to 24p3R
will increase intracellular iron levels without inducing apoptosis
(Devireddy et al., 2005). In neurons, NGAL and 24p3R are impor-
tant for dendritic spine maturation and influenced by iron, with
pertubation of dendritic spine maturation in absence of iron
(Mucha et al., 2011). This is in concordance with indications that
neurodegenerative diseases are often associated with disturbances
of brain iron metabolism (Crichton et al., 2011). However, a recent
study showed that iron and transferrin did not produce an effect on
NGAL toxicity to primary cortical neurons (Bi et al., 2013). There-
fore, the mechanisms of NGAL via 24p3R in neuronal cells are still
unclear.

2.1.2. Megalin
The other known receptor for NGAL is megalin (which is also

known as low-density lipoprotein receptor-related protein 2:
LRP2). Megalin is a multi-ligand endocytosis receptor, expressed
on a variety of epithelia; primarily epithelia possessing a high
absorptive capacity, such as tubular epithelial cells of kidneys,
ileum, choroid plexus, and yolk sac (Moestrup and Verroust,
2001). Megalin has also been detected in cardiomyocytes cultured
in vitro (Van Dijk et al., 2010). Megalin belongs to the low density
lipoprotein receptor family (Saito et al., 1994) and has been shown
to bind a variety of (mouse) lipocalins (Flower, 2000; Leheste et al.,
1999). Hvidberg and coworkers (Hvidberg et al., 2005) investigated
whether NGAL also binds to megalin. Results indicate that apo-
NGAL (NGAL not bound to iron) binds to megalin with a high affin-
ity. Similar affinity was found with siderophore-bound NGAL. To
confirm that megalin is responsible for the cellular uptake of NGAL
a sheep polyclonal anti-megalin antibody was used. This antibody
completely prevented cellular uptake of NGAL, indicating the
important role of megalin in mediating the cellular uptake of NGAL
(Hvidberg et al., 2005). Expression of the megalin receptor has
been detected in neuronal cell cultures (Lee et al., 2012), indicating
that megalin may have a function in the uptake of NGAL in the
brain. Miharada et al., (2008) found high levels of megalin mRNA
in CD3+ T lymphoid cells and the next highest in CD71++ erythroid
cells (Miharada et al., 2008). CD15+ granulocytic cells, CD14+

monocyte/macrophage lineage cells, and CD19+ B lymphoid cells
also expressed megalin mRNA, albeit at lower levels than in CD3+

or CD71++ cells. Expression of megalin on T- as well as B-lympho-
cytes may indicate a function for NGAL in the immune system but
this needs to be further investigated.

In the brain megalin in the endothelium lining of the BBB was
reported as important for transport of ligands across the BBB
(Pan et al., 2004). Recently a role for megalin was described in Alz-
heimer’s disease using an endothelial specific megalin knockout
mouse model. The investigators showed that mice lacking the
megalin receptor in the endothelium were more prone to neurode-
generation. The mice also showed behavioral characteristics asso-
ciated with Alzheimer’s disease, including anxiety and cognitive
impairment (Dietrich et al., 2014).

Presently, molecular mechanisms induced by NGAL binding to
megalin are still unknown.

2.2. NGAL and inflammation

As previously mentioned, NGAL was first described in neutro-
phils (Kjeldsen et al., 1993). Later NGAL has also been observed
in other cells of the immune system including macrophages and
dendritic cells (Jha et al., 2014; Flo et al., 2004). Upregulation of
NGAL can be induced by various stimulants including lipopolysac-
charide (Zhang et al., 2008), IL-1b (Borkham-Kamphorst et al.,
2011; Yndestad et al., 2009; Cowland et al., 2003), IL-6 (Hamzic
et al., 2013), IFN-c (Zhao et al., 2014), and TNF-a (Zhao et al.,
2014; Naude et al., 2012; Yndestad et al., 2009), depending on
cell-type.

Multiple studies have investigated the function of NGAL in the
immune system (Han et al., 2012; Ip et al., 2011). As discussed ear-
lier, NGAL is involved in anti-microbial defense by sequestering
iron (Goetz et al., 2002). The role of NGAL in the innate immune
system has been extensively reviewed (Borregaard and Cowland,
2006) and is beyond the scope of this review.

In a recent report NGAL was demonstrated to have chemotactic
properties, as neutrophils were shown to migrate along increasing
concentrations of NGAL. Neutrophils of NGAL-/- mice showed a
decreased neutrophil adherence, which was associated with lower
CXCR2 expression (Schroll et al., 2012).

Besides its functions in the innate immune response, NGAL was
also reported to be involved in chronic inflammation and autoim-
mune diseases. In a study of NGAL in a healthy population, NGAL
was associated with other markers of inflammation, including C-
reactive protein and neutrophil count (Lindberg et al., 2014). NGAL
levels are upregulated in different autoimmune disorders
(Shashidharamurthy et al., 2013; Rubinstein et al., 2008). Inflam-
mation in autoimmune disorders has been studied in NGAL-/-
mice. Chronic skin inflammation was reduced by 50% in NGAL-/-
mice. This effect was abolished when NGAL was administrated to
the NGAL-/- mice (Shashidharamurthy et al., 2013). The complex-
ity of the role of NGAL in immune responses is further evidenced
by a study where NGAL was evaluated in two different inflamma-
tion models. NGAL-/- mice were partially protected against inflam-
mation induced by the reverse passive Arthus (RPA) reaction. To
initiate this type of inflammation animals were injected with rab-
bit IgG anti-ovalbumin, and thereafter with ovalbumin to provoke
an immune response. In the same article, the authors discussed
NGAL in a model of serum induced arthritis (SIA). They demon-
strate NGAL-/- mice to have a more extreme, rather than a damp-
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ened, inflammatory response. When the inflammatory infiltrated
tissues of these mice were compared, the investigators found pri-
marily neutrophils in the infiltrates from WT mice, whereas in
the NGAL-/- mice, macrophages were more abundant. This sug-
gests that NGAL is important for the recruitment of neutrophils,
and that without NGAL other immune cells like macrophages
mediate the SIA response (Shashidharamurthy et al., 2013).

To summarize, NGAL has been associated with a wide range of
immune responses, ranging from anti-microbial defense to chronic
inflammation in auto-immune disorders.

2.3. Function of NGAL in the central nervous system

Under physiological conditions NGAL concentrations in the CNS
are very low, with mRNA levels undetectable (Ip et al., 2011; Flo
et al., 2004). Very little is known about physiological functions of
NGAL in the brain. Under inflammatory conditions, NGAL is
increased and has pleiotropic effects of different cell-types within
the CNS. These effects are hypothesized to lead to behavioral
changes and are depicted in Fig. 2.

Interestingly, NGAL production is strongly induced in the CNS
by peripheral lipopolysaccharide (LPS) administration (Marques
et al., 2008; Flo et al., 2004), meaning peripheral inflammation
leads to an upregulation of NGAL in the brain. It is also known that
NGAL can be produced in different cell types in the CNS, including
neurons, astrocytes and microglia, and that its expression is
increased after stimulation with TNF-a (Naude et al., 2012). This
appeared to be mediated by the proinflammatory TNFR1 receptor
rather than the cytoprotective TNFR2 receptor. It was suggested
that the TNFR1 mediated NGAL subsequently inhibits the TNFR2
signaling pathway, hence, further promoting a proinflammatory
TNF-a response. Additionally, it was shown that NGAL is taken
up by neurons, suggesting neurons may be a target for the actions
of NGAL.

In the CNS, microglia form a first line of defense protecting the
CNS from pathogens and other harmful conditions. In addition to
these physiological functions, glial cells also participate in chronic
neuroinflammation under pathological conditions. Long-lasting
and excessive activation of glia contributes to neural tissue dam-
ages in neuroinflammatory and neurodegenerative diseases such
as multiple sclerosis, Alzheimer’s disease and Parkinson’s disease
Fig. 2. Proposed mechanism by which NGAL is a mediator between peripheral disease an
systemic levels of NGAL. This systemic increase in NGAL might lead to a local increase of
the central nervous system. In microglia it was found that high NGAL levels promote deram
sensitize microglia to apoptosis. Astrocytes are sensitized to apoptosis as well as ne
astrocytosis. For neurons NGAL was found to be a factor in migration. Neurons were also
the CNS are thought to contribute to behavioral changes including anxiety and depressi
(Ransohoff and Perry, 2009; Hanisch and Kettenmann, 2007;
Garden and Moller, 2006). In microglia, expression as well as secre-
tion of NGAL is increased under inflammatory conditions in the
CNS. The expression of NGAL and 24p3R was strongly enhanced
by LPS, serum withdrawal, Phorbol 12-myristate 13-acetate PMA,
IFN-c and calcium ionophore A23187 (Lee et al., 2007). NGAL
appears to sensitize activated microglia to apoptosis and it also
induces deramification of microglia (Lee et al., 2007). It is specu-
lated that activated microglia may secrete NGAL, which acts in
an autocrine manner to induce morphological transformation of
microglia. At the same time, secreted NGAL proteins may sensitize
activated microglia to apoptotic signals, so that activated microglia
can be easily eliminated by apoptosis as a self-regulatory mecha-
nism (Lee et al., 2007). NGAL also seems to have an indirect effect
on the migration of microglia, NGAL-treated astrocyte-conditioned
medium (ACM) significantly enhanced the migration of microglia
compared with control-ACM (Kim et al., 2011). Like macrophages,
microglia can be subdivided into M1 and M2 populations; M1
microglia being associated with inflammation and tissue-damag-
ing properties, whereas M2 microglia are thought to have anti-
inflammatory functions. Recently it has been suggested that NGAL
specifically is involved in the polarization of M1 microglia (Jang
et al., 2013). The NO induced apoptosis resistant microglia cell line
BV-LS13 was found to have significantly lower NGAL expression
than its parental BV-2 line which is sensitive to NO induced apop-
tosis. NGAL overexpression in these cells resulted in an increased
sensitivity to apoptosis caused by NO donors sodium nitroprusside
SNP and S-nitroso-N-acetylpenicillamine SNAP (Lee et al., 2007).
NGAL also was described to stimulate migration of microglia and
neurons, both in an in vitro assay as well as in vivo in zebrafish
(Kim et al., 2011).

NGAL has also been implicated in the process of astrocytosis,
through the 24p3R (Lee et al., 2009). With astrocytosis, a morpho-
logical change takes place in astrocytes, resulting in long and
branched processes and an increased cytoplasmic mass. This is
accompanied by an increase in intermediate filaments including
glial fibrillary acidic protein (GFAP). In case of damage, astrocytes
can also proliferate to fill gaps left by death of neurons (Lee
et al., 2009). Moreover, NGAL sensitizes astrocytes to apoptotic
as well as necrotic cell death (Lee et al., 2009). Later research indi-
cated that chemotaxis could be a mediator in this process, as NGAL
d depression. Different stressors including myocardial ischemia and infection raise
NGAL in the brain. NGAL is known to influence the function of different cell types in

ification of microglia. NGAL was also found to control migration of microglia and to
crotic cell-death by high NGAL levels. NGAL is also implicated in the process of
more sensitive to apoptosis in the presence of high levels of NGAL. These changes in
on.



Table 1
Different actions of NGAL in the cardiovascular system and central nervous system.

Functions of NGAL Reference

Cardiovascular system
Induces cardiomyocyte apoptosis Xu et al. (2012)
Induces neutrophil infiltration Yang et al. (2012)
Induces endothelial dysfunction Song et al. (2014)
Induces vascular inflammation Song et al. (2014)
Increases blood pressure Song et al. (2014)

CNS
Induces microglia activation Lee et al. (2007)
Stimulates microglia migration Kim et al. (2011)
Decreases neural spine formation Mucha et al. (2011)
Promotes reactive astrocytosis Lee et al. (2009)
Sensitizes microglia, astrocytes and

neurons to apoptosis
Lee et al. (2012), Naude et al. (2012),
Lee et al. (2009), Lee et al. (2007)
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induced changes in the expression of chemokines CXCL2 and
CXCL10. Further evidence that NGAL is important for chemokine-
associated migration was demonstrated in a cell culture experi-
ment in which NGAL induced migration of astrocytes, that was
abrogated by CXCL10 neutralizing antibodies (Lee et al., 2011).
Additionally, in NGAL knock-out mice expression of the chemokine
receptor CXCR2 was significantly reduced (Schroll et al., 2012).

In neurons, TNF-a is known to induce NGAL expression (Naude
et al., 2012). One of the effects of NGAL on neurons is sensitization
to apoptosis caused by various mediators including NO and TNF-a
(Lee et al., 2012). In a study where primary neurons were stimu-
lated with conditioned medium from cultured brain slices with
reactive astrocytes, a neurotoxic effect of the conditioned medium
was shown. This effect was inhibited when NGAL was partially
depleted from the medium with immunoprecipitation (Bi et al.,
2013).

A role for NGAL has been postulated for diseases of the CNS
including multiple sclerosis, Alzheimer’s disease and depression.
In a murine model of experimental autoimmune encephalitis, dis-
ease was more severe in NGAL-/- mice, indicating a protective role
of NGAL (Berard et al., 2012).

With respect to dementia, NGAL levels are increased in the CSF
of patients with Alzheimer’s disease and mild cognitive impair-
ment. Mechanistic studies revealed that NGAL sensitizes nerve
cells to amyloid beta toxicity. In post-mortem brain tissue, NGAL
expression is increased in brain areas associated with Alzheimer’s
pathology (Naude et al., 2012). The authors of this paper also
showed that NGAL silences a TNFR-2 mediated protective signaling
cascade important for TNF-a mediated neuroprotection (Naude
et al., 2012). This last finding is in line with the observation that
NGAL inhibits microglial M2 polarization (Jang et al., 2013). A sum-
mary of functions of NGAL in the CNS is given in Table 1.

Taken together, NGAL was associated with both pro-inflamma-
tory and anti-inflammatory pathways in the CNS. With respect to
the pro-inflammatory effect, NGAL was seen to stimulate reactive
astrocytosis. NGAL was also found to stimulate microglial M1
polarization while inhibiting microglial M2 polarization, and so is
causing a more pro-inflammatory state of the microglia popula-
tion. Regarding the anti-inflammatory effect, NGAL has a protective
role in an experimental model of autoimmune encephalitis. It thus
seems regulation of neuroinflammation by NGAL is complex and in
need of more research.

2.4. Function of NGAL in depression

Several publications have reported the association of NGAL with
behavior and depression. NGAL showed a seven fold upregulation
in the hippocampus of mice that underwent a 6 h restraint as a
model for stress (Mucha et al., 2011). In addition, treatment of
cultured neurons with holo-NGAL revealed a ± 30% decrease in
spine density, suggesting a role for NGAL in neuronal spine desta-
bilization and elimination (Mucha et al., 2011). This inhibitory
effect of NGAL on neuronal growth may connect NGAL with
depression, as depression is often associated with changes in the
hippocampus including a loss in synaptic plasticity and a decrease
in brain derived neurotrophic factor (Sen et al., 2008; Duman and
Monteggia, 2006). Another indicator that NGAL is linked to stress
and behavior is the finding that NGAL is highly upregulated in
the amygdala after restraint-stress. This increase was shown pri-
marily in neurons and associated with an increase in immature
neuroplastic spines, suggesting the formation of fear-memory
(Skrzypiec et al., 2013). As the amygdala is involved in fear mem-
ory (Roozendaal et al., 2009), it can be hypothesized that the NGAL
upregulation found in the amygdala after restraint stress is linked
to fear induced behavioral changes, such as depression.

However, it was recently shown that NGAL-/- mice show more
anxious and depressive-like behavior when compared with their
non-transgenic littermates. The change in behavior was associated
with an activation of the hypothalamic–pituitary-adrenal (HPA)
axis (Ferreira et al., 2013). In contrast, locomotion activity of
NGAL-/- mice did not change in an open field test; only when stim-
ulated with LPS the absence of NGAL was uncovered (Jang et al.,
2013). This possibly means that NGAL signaling follow a U-shaped
curve, where both absence and overexpression give rise to patho-
logic behavior of the animals. This phenomenon has been
described for other inflammatory mediators as well (Pollmacher
et al., 2002). With regards to NGAL and depression in patients,
we previously showed that increased plasma NGAL was signifi-
cantly associated with depression in an elderly population
(Naude et al., 2013). This association persisted after correcting
for identified determinants of higher plasma NGAL in humans,
including increased age, male sex, use of anti-inflammatory drugs
and life-style factors. It was also shown that increased plasma
NGAL levels closely resemble the current state of depression. We
later also reported a correlation between NGAL levels and depres-
sion in a population of heart failure patients. NGAL levels showed a
positive correlation with the somatic/affective symptoms of
depression, but not the cognitive/affective symptoms. This correla-
tion was still significant after correcting for age, sex, cardiac dys-
function (left ventricular ejection fraction (LVEF)) and renal
dysfunction (creatinine) (Naude et al., 2014). These studies suggest
that NGAL may be a marker for depression. Whether this refers to a
causal association still has to be determined.

2.5. Function of NGAL in Cardiovascular disease

The role of NGAL in cardiovascular disease has been examined
both in experimental and in clinical studies. In a study combining
clinical and experimental data, serum levels of NGAL were mea-
sured in patients with HF following AMI and in patients with
chronic HF. In both groups, patients with chronic heart failure or
AMI had significantly higher levels of NGAL when compared with
control subjects. Furthermore, NYHA classes of patients were signif-
icantly correlated with NGAL levels (Yndestad et al., 2009). Other
studies also mentioned raised NGAL levels in patients with cardio-
vascular disease (Shrestha et al., 2012; Damman et al., 2008).
Recently NGAL was presented as having a high prognostic value
in patients with heart failure, as higher plasma NGAL levels were
associated with higher mortality (van Deursen et al., 2014). Higher
levels of NGAL in these patients could, however, also reflect renal
failure, as renal failure is often seen in heart failure patients and
leads to increased levels of NGAL (De Berardinis et al., 2014). In
an experimental rat model of post-MI HF, NGAL expression was sig-
nificantly elevated in the non-ischemic area of the left ventricle
(LV). In their model the increase in NGAL expression lasts from 2
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to at least 64 days after the induction of MI, in conjunction with the
development from acute to a chronic stage of HF. Further analysis of
the non-ischemic part of the LV 56 days following the induction of
MI showed that up-regulation of both NGAL mRNA as well as NGAL
protein was mainly restricted to cardiomyocytes (Yndestad et al.,
2009). NGAL has also been studied in acute cardiac disease, includ-
ing AMI. A study comparing NGAL levels in AMI compared to stable
coronary artery disease found that NGAL plasma levels were higher
in AMI (Sahinarslan et al., 2011). Another study found NGAL present
in human atherosclerotic plaques, where NGAL colocalized with
macrophages (Hemdahl et al., 2006). The same authors also studied
experimental MI in a mouse model. Here they found NGAL was sig-
nificantly increased in the heart and aorta of MI mice. The colocal-
ization of NGAL with matrix metallo protein 9 (MMP-9) in plaques
and infarcted hearts suggests a role for NGAL in the MMP-9
mediated remodeling (Hemdahl et al., 2006). In a 10-year follow
up study performed in a healthy population, higher baseline NGAL
levels were associated with adverse cardiac events and all-cause
mortality (Lindberg et al., 2014). The association of higher NGAL
levels with cardiovascular risk was previously reported in a popula-
tion of community dwelling elderly (Daniels et al., 2012).

Several studies on cardiovascular disease related to NGAL have
been performed in NGAL-/- mice. The hearts of NGAL-/- mice show
better contractile function and improved functional recovery and
reduced infarct size following ischemia/reperfusion (I/R) injury
compared to WT mice (Yang et al., 2012). Under baseline conditions,
the mitochondrial function of NGAL-/- hearts was significantly
enhanced, as demonstrated by biochemical analysis of respiratory
chain activity and markers of biogenesis, as well as electron micro-
scopic investigation of the mitochondrial ultrastructure. Acute or
chronic systemic administration of NGAL impaired cardiac func-
tional recovery to I/R and dampened the mitochondrial function in
hearts of NGAL-/- mice. These effects were associated with an exten-
sive modification of the fatty acyl chain compositions of intracellu-
lar phospholipids (Yang et al., 2012). A possible function for NGAL in
the recruitment process of infiltrating cells was suggested in a study
investigating NGAL in heart transplantation. In NGAL-/- hearts
transplanted to NGAL+/+ recipients, a significant reduction of infil-
trating granulocytes was observed when compared to the number
of infiltrated cells in NGAL+/+ transplanted donor hearts. However,
the opposite combination (NGAL+/+ to NGAL-/-) did not fully mirror
the NGAL+/+ donor/recipient situation, thus suggesting a graft resi-
dent contribution to the infiltration process (Aigner et al., 2007).
Polymorphonuclear neutrophils from NGAL-/- mice had a signifi-
cantly reduced adhesion capacity, which was linked to a reduced
expression of adhesion associated surface proteins and to the che-
mokine receptor CXCR2 on the membranes of these cells (Schroll
et al., 2012). A study in a cultured cell-line of cardiomyocytes indi-
cated that NGAL directly induces apoptosis in cardiomyocytes (Xu
et al., 2012). Cardiomyocyte apoptosis can influence the remodeling
process underlying cardiovascular conditions including heart fail-
ure. According to these articles, NGAL is involved in the inflamma-
tory response in the heart, attracting immune cells to the site of
damage. Functions of NGAL in the heart are summarized in Table 1.

Thus, in heart failure patients, plasma NGAL is increased and
has a prognostic value. The observed prognostic value of higher
NGAL levels might be associated with a general higher degree of
inflammation in patients with heart failure, as in a healthy popula-
tion NGAL was associated with all tested markers of inflammation.
3. Discussion: NGAL as possible mediator in cardiovascular
disease and depression?

In this review we have discussed NGAL and its role in both car-
diovascular disease and depression. Furthermore, we reviewed the
potential role of NGAL as common denominator for both condi-
tions. Firstly, NGAL is well recognized to be elevated in heart fail-
ure patients (Shrestha et al., 2012; Yndestad et al., 2009;
Damman et al., 2008). Higher plasma levels of NGAL in heart failure
patients are associated with higher mortality (van Deursen et al.,
2014). Secondly, patients with late life depression show elevated
plasma levels of NGAL (Naude et al., 2013). Thirdly, recently we
showed that in patients with heart failure, depression scores are
associated with circulating levels of NGAL, irrespective of measures
of cardiac and renal dysfunction (Naude et al., 2014).

As previously discussed, patients suffering from cardiovascular
disease are at increased risk of developing depressive like symp-
toms (Bush et al., 2005; Lesperance and Frasure-Smith, 2000). Like-
wise the inverse correlation is valid (Lippi et al., 2009). The co-
morbidity of depression in cardiovascular disease substantially
worsens prognosis. The observation that optimal cardiovascular
treatment does not reduce depressive symptoms, while anti-
depressive therapy is not associated with improved prognosis in
these patients, may suggest a common underlying mechanism
rather than a causal relationship. Many investigators referred to
inflammation as a link between these two pathologies (Celano
and Huffman, 2011; Poole et al., 2011; Kop et al., 2010; Pasic
et al., 2003). In cardiovascular disease, such as AMI and CHF, the
patients most often exhibit a higher level of inflammatory markers
(Frangogiannis et al., 2002). A higher expression of cytokines in
both blood and brain, was observed in patients with depression
(Dowlati et al., 2010; Howren et al., 2009; Connor and Leonard,
1998). Research in animal models has indicated that an AMI causes
local inflammation in the brain, including microglia activation and
higher expression of, amongst others, TNF-a (Rana et al., 2010;
Francis et al., 2004).

We proposed a possible role for NGAL in the link between car-
diovascular disease and depression. NGAL has multiple functions
related to inflammation. Several functions of NGAL are associated
with autoimmune reactions and chronic inflammation
(Shashidharamurthy et al., 2013). Inflammation of the heart and/
or the brain leads to a higher localized expression of NGAL. Addi-
tionally, NGAL is upregulated in a mouse model of stress
(Skrzypiec et al., 2013; Mucha et al., 2011). In this regard, our
group found higher levels of NGAL in the plasma of depressed heart
failure patients(Naude et al., 2014). Further information that NGAL
is related to depression is provided by a study showing NGAL to
inhibit spine maturation of cultured neurons from the hippocam-
pus (Mucha et al., 2011), a brain region often associated with
(the neurotrophic hypothesis of) depression.

Two different receptors are known to bind NGAL, 24p3R and
megalin, both of which are found in the CNS. Knowing that NGAL
plays a role in inflammation in both the heart and the brain, and
that inflammation has been mentioned as a mechanism by which
cardiovascular disease leads to depression, it could be speculated
that NGAL is involved in the link between cardiovascular disease
and depression.

In general, the literature shows NGAL to have predominantly
pro-inflammatory properties. This is evident from several observa-
tions, including NGAL possessing chemotactic properties, specifi-
cally for neutrophils, and ability to activate microglial cells
(Schroll et al., 2012; Lee et al., 2007). Furthermore, NGAL was
shown to silence anti-inflammatory pathways such as TNF-R2 sig-
naling and M2 microglial polarization. Higher NGAL levels might
thus indicate an imbalance in pro- and anti-inflammatory path-
ways giving rise to a state of chronic inflammation. Since neuroin-
flammation is linked to depressive symptoms, a cardiac induced
chronic inflammatory state, when affecting the brain, may corre-
late cardiovascular disease to depression.

Hypothetically, increased NGAL levels that arise from a stressor
like cardiovascular disease might lead to increased cytokine levels
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in the brain, either through leakage of cytokines through the blood
brain barrier or other mechanisms. Higher NGAL in the brain could
lead to microglia activation and changes in neurons including a
decrease in spine formation in the hippocampus and an increase
in immature neuroplastic spines in the amygdala. Both neuroin-
flammation represented by microglia activation (Muller, 2014)
and neuronal changes in the hippocampus and amygdala have
been associated with behavioral changes including depressive
and anxious behavior (Roozendaal et al., 2009; Dantzer et al.,
2008; Sen et al., 2008; Duman and Monteggia, 2006).

In chronic heart failure patients increased serum NGAL levels
associated with the somatic, however not the cognitive symptoms
of depression (Naude et al., 2014), the former, but not the latter
found associated with inflammation (Kupper et al., 2012). More-
over, in the study of Naude et al., 2014, NGAL was associated with
the experienced burden of the disease, reflected by NYHA classifi-
cation and 6 min walking test, rather than with the depressed car-
diac function itself. This observation might link NGAL to specific,
still uncovered pathways. Future research is necessary to further
elucidate the exact function of NGAL in the link between cardiovas-
cular disease and depression.
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