77 research outputs found

    Exchange of Services in Networks: Competition, Cooperation, and Fairness

    Full text link
    Exchange of services and resources in, or over, networks is attracting nowadays renewed interest. However, despite the broad applicability and the extensive study of such models, e.g., in the context of P2P networks, many fundamental questions regarding their properties and efficiency remain unanswered. We consider such a service exchange model and analyze the users' interactions under three different approaches. First, we study a centrally designed service allocation policy that yields the fair total service each user should receive based on the service it others to the others. Accordingly, we consider a competitive market where each user determines selfishly its allocation policy so as to maximize the service it receives in return, and a coalitional game model where users are allowed to coordinate their policies. We prove that there is a unique equilibrium exchange allocation for both game theoretic formulations, which also coincides with the central fair service allocation. Furthermore, we characterize its properties in terms of the coalitions that emerge and the equilibrium allocations, and analyze its dependency on the underlying network graph. That servicing policy is the natural reference point to the various mechanisms that are currently proposed to incentivize user participation and improve the efficiency of such networked service (or, resource) exchange markets.Comment: to appear in ACM Sigmetrics 201

    Join-Reachability Problems in Directed Graphs

    Full text link
    For a given collection G of directed graphs we define the join-reachability graph of G, denoted by J(G), as the directed graph that, for any pair of vertices a and b, contains a path from a to b if and only if such a path exists in all graphs of G. Our goal is to compute an efficient representation of J(G). In particular, we consider two versions of this problem. In the explicit version we wish to construct the smallest join-reachability graph for G. In the implicit version we wish to build an efficient data structure (in terms of space and query time) such that we can report fast the set of vertices that reach a query vertex in all graphs of G. This problem is related to the well-studied reachability problem and is motivated by emerging applications of graph-structured databases and graph algorithms. We consider the construction of join-reachability structures for two graphs and develop techniques that can be applied to both the explicit and the implicit problem. First we present optimal and near-optimal structures for paths and trees. Then, based on these results, we provide efficient structures for planar graphs and general directed graphs

    Bandwidth Reservation in Multihop Wireless Networks: Complexity and Mechanisms

    Get PDF
    We show that link interferences in wireless networks make multihop bandwidth reservation in such an environment an NP-complete problem. This is in sharp contrast to bandwidth reservation in wireline networks where efficient polynomial algorithms exist. We also consider the problem of slot allocation according to bandwidth requirements in a wireless slotted environment. In the context of Mobile Ad Hoc Networks, we propose simple heuristics applicable to the OLSR routing protocol in order to find routes that satisfies requirements without impairing the performance of other connections
    corecore