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We consider a slotted ring that allows simultaneous transmissions of messages by different
nodes, known as ring with spatial reuse. To alleviate fairness problems that arise in such
networks, policies have been proposed that operate in cycles and guarantee that certain
number of packets, called quota, will be transmitted by every node in every cycle. In this
paper, we provide sufficient and necessary stability conditions that implicitly characterize the
stability region for such rings. These conditions are derived by extending a novel technique
developed for some networks of queues satisfying a monotonicity property. Our approach
to instability is novel and its peculiar property is that it is derived from the instability of a
dominant system. We show that the stability region depends on the entire distribution of the
message arrival process leading to a region with nonlinear boundaries, the exact computation
of which is in general intractable. Next, we introduce the notions of Essential and Absolute
stability region. An arrival rate vector belongs to the former region if the system is stable
under any arrival distribution with those arrival rates, while it belongs to the later if there
exists some distribution with those rates for which the system is stable. Using a linear
programming approach, we derive bounds for these stability regions that depend only on
conditional cycle lengths. For the case of two nodes, we provide closed-form expressions for
the Essential stability region.
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1 Introduction

We consider a ring with spatial reuse, i.e., a ring in which multiple simultaneous transmissions

are allowed as long as they take place over different links (d. [4, 8, 10]). While rings with

spatial reuse have higher throughput than standard token passing rings, they also introduce

the possibility that some overloaded nodes may block other nodes from accessing the ring.

To avoid this problem, the following policy is proposed in [4, 8] for the operation of the ring:

Each node is assigned a number called "quota". The policy operates in cycles. A node is

allowed to transmit packets generated locally during a cycle, as long as the number of these

packets that have already been transmitted does not exceed its assigned quota. A cycle ends

when the quota of all nodes are delivered to their destinations. In this way, the operation of

a node with regular traffic requirements is not adversely affected by nodes that may become

overloaded. The policy requires a distributed mechanism by which every node realizes that all

the other nodes completed their quota and thus a cycle ends. Such a mechanism is provided

in [8]. An analysis of the throughput characteristics of this policy is presented in [10].

The primary goal of this work is to obtain the stability region of the ring network with

finite quota and to compare it with the maximum achievable stability region for such ring

networks (d. [10, 13, 21]). The second motivation is to extend stability approach of Geor

giadis and Szpankowski [11, 12] and Szpankowski [19, 20] to ring networks with spatial reuse,

and other queueing networks with a monotonicity property. The conditions for stability are

derived by means of a technique that is based on an application of mathematical induction,

stochastic monotonicity properties and Loynes stability criteria. A special technique, based

on the structure of the complement of the stability region and the construction of a domi

nant system, permits the derivation of the necessary stability conditions from the instability

condition of a dominant system. The general steps of the above stability analysis have been

applied to the analysis of other systems as well (d. [11, 12, 19, 20]). It should be stressed

that this general construction of [11, 20] requires detailed and subtle modifications for almost

every queueing network which may be far from trivial, and this paper is a typical example.

In addition we provide a decomposition and characterization of the instability region of the

system.

As it turns out, the exact computation ofthe stability region for the ring with spatial reuse

depends on the distribution of the arrival processes and this often renders this computation

intractable. The dependence on the distribution lead us to the introduction of the notions of

the Essential and Absolute stability region. The first contains any arrival vector such that for

every distribution with this arrival rate vector the network is stable. The second contains any
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arrival rate vector for which there exists some distribution with this arrival rate vector under

which the network is stable. In this paper we present a method based on linear programming

that permits the development of upper and lower bounds on the Absolute and Essential

stability regions using only the knowledge of the average conditional cycle lengths. For the

case of two nodes we provide a closed-form expression for the Essential stability region in

terms of the average conditional cycle lengths.

Stability criteria for Markov chains and more general queueing systems have a long tradi

tion. In recent years, resurgence of interest in these problem arose due to novel applications.

It resulted in an excellent book of Meyn and Tweedie [18]. This book as well as most research

in this area is based on the so called Lyapunov or test function approach. Construction of

this function is quite troublesome for multidimensional Markov chains. A general approach to

such a construction was suggested in 1981 by Malyshev and Mensikov [16]. This general con

struction still fails for many important distributed systems, however, recently some progress

has been achieved (d. [2, 3, 9]). Our approach is based on different philosophy, but it has

some similarities with the faces and induced Markov chains of Malyshev and Menshikov [16].

Interestingly enough, there are network of queues such as ALOHA and ring network

analyzed in this paper for which the stability region is nonlinear and depends on the exact

form of the arrival distribution function, for which the approach of Malyshev and Mensikov

might not work (at least with piecewise-linear Lyapunov functions). For these networks our

approach led to a construction of stability region (d. [20] and this paper). Finally, we should

mention a recent new development in this area suggested by Dai [6] (d. also [7]) who used

fluid approximation to establish general stability criteria. Monotonicity was used also in

[17] to establish stability region for Jackson networks. For more exhaustive discussion of the

existing literature on stability criteria the reader is referred to [11, 18, 19, 20].

The paper is organized as follows. In the next section we formulate a stochastic model

for the network under consideration. Section 3 contains our main results: In Subsection 3.1

we present the construction of the exact stability region. Bounds on the stability region are

provided in Section 3.2. For a ring with two nodes we present in Section 3.3 the derivation

of the Essential stability region.Finally Section 4 contains results needed for establishing the

necessary conditions for stability, and in fact it describes a novel approach to the instability

analysis.
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2 Model Description and Preliminary Results

We consider a ring network consisting of a set of M nodes with cardinality, IMI = M. Node

i E M transmits in its outgoing link, either packets arriving from the outside world (i.e.,

"external" packets) or packets that were originated at some other node and have to cross

node i in order to reach their destination. Time is divided in slots, packets are of fixed size

and each slot is equal to the the length of a packet. We assume zero propagation delay. A

node can transmit a packet at the outgoing link at the same time that it receives another

packet in the incoming link. A node receiving a packet with destination another node in the

ring (ring packet), may relay the packet in the outgoing link in the same slot, i.e., the ring

has cut-through capabilities. Moreover, a ring packet has non-preemptive priority over the

packets that exist in the node queue. Packets are removed from the ring by their destination

(not by the source as in standard token rings). We study the following policy, which is a

generalization of a policy proposed in the literature (d. [4, 8]) in order to ensure the fair

access to the ring:

(AI) The system works in cycles, and the kth cycle starts at time Tk. We write N(k) =
(N1(k), . .. , NM(k)) to denote the number of packets in the node buffers at the beginning

of cycle k = 1, .... The number of external packets that node i is allowed to transmit

during cycle k is Qi(k) = min {fi(Ni(k)),Qi}' Qi > 0, where fiO is a nondecreasing

and contractive function, i.e., fi( S1)- fi( S2) :s; S1 -S2 whenever 81 > 82· The quantity Qi

is called the (maximum) quota. The kth cycle ends when all Q i (k) packets, 1 :s; i :s; M,

are delivered to their destinations. Algorithmic and implementation details can be

found in [8, 4, 10], however, of interest to our discussion here is only the statistics of

the length of time needed to complete a cycle (see (1) below). The standard ring network

operating with the quota allocation policy corresponds to the case where fi( 8) = 8.

As part of the technique used in the proof of the stability conditions we need to analyze

a system eM,u, where in addition to the set, M, of regular nodes there is also a set, U, of

"persistent nodes", which operate as follows.

(A2) (i) There are no external packet arrivals at node i E U, and (ii) a node i E U partic

ipates in the policy described in (AI) by generating locally and transmitting exactly

Qi "dummy" packets in a cycle (in addition to the packets that may have originated in

some other node but have to be retransmitted by node i in its outgoing link in order to

reach their destination). While the nodes in U affect the duration ofthe cycles, by def

inition they do not have queues and we are interested only in the stability of the queue
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length process of the nodes in M. As will be seen in the next section, the introduction

of persistent nodes assures that when some regular nodes behave like persistent ones,

the resulting system is a copy of the original system, but of lower dimension. This prop

erty permits the application of mathematical induction. The case U = 0 corresponds

to the ring we are interested in.

In the following we make an assumption regarding the statistics of external packet arrival

process at the ring nodes.

(A3) We denote by Ri(t) be the number of external packets arriving at station i E M in slot

t ~ 1. The nth packet originated at node i EMu U has destination D i ( n) EMu U.

The processes {Ri(t)}~l' i E M and {Di(n)};;:'=l' i EMu U consist of i.i.d. random

variables and are independent of each other. We set Ai = ERi(I), i E M and Pij =

Pr{Di(l) = j}, i,j EMu U. Clearly, L-jEMUU Pij = 1, i EMu U.

Before proceeding, we must introduce some new notations. Boldface letters denote vec

tors, while calligraphic ones denote sets of nodes. Our main goal is to study the ergodicity

of the imbedded Markov chain N(k) = (N1(k), ... ,NM(k)) for k = 0,1, .... We write

MA = M - A (while nonstandard, this notation simplifies the presentation significantly).

We will often consider the partition (Mv, V) of the set M, where V ~ M. For a vector

x = (XI, ... ,XM) we set x A = {XdiEA. In particular, we write N(k) = (NMA(k),NA(k)).

For M -dimensional vectors x, y, x ~ y reads Xi ~ Yi for all 1 ~ i ~ M.

As already observed in [8, 10], the behavior ofthe network depends crucially on the cycle

length n = Tk+I - Tk which is also called the evacuation time. Let T(q) (or Tk(q)) be the

conditional length of cycle k given that QMUU(k) = q = (qI, ... ,qM, ... ,qM+lul)" It was

shown in [10] that

T(q) = .max {Hi(q)},
zEMuU

(1)

where Hi(q) is the total number of packets out of L-iEMuU qi originated in a cycle at any

node, regular or persistent, that have to pass through the outgoing link of node i in order to

reach their destination. Note that Hi(q) includes the packets originated at node i.

In passing we should mentioned that in order for all nodes to realize the end of a cycle,

a distributed mechanism is needed [8]. The implementation of this mechanism increases the

evacuation time by two slots and the results in this paper can be directly applied by simply

replacing T( q) with T(q)+2. We also mention that (1) holds under any work-conserving

policy, i.e., any policy that instructs each node never to idle whenever it can transmit packet

in its ougoing link (see [13]). Therefore, the order by which packets are served at a node is

immaterial.
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Below we establish a monotonicity property of the conditional cycles. As we will see, this

is the relevant property of the cycle lengths from the stability point of view. In fact, our

analysis holds for any other system which, in addition to operating as in (AI) and satisfying

the statistical assumptions in (A3), has the property that the cycle lengths are independent

of the past history given QMUU(k) = q and satisfy the monotonicity property in the next

proposition.

Proposition 1 Let qI ::; q2. Then

where ::;st means "stochastically smaller".

Proof. Follows easily from formula (1).•

Let us now consider a modified system in which a set V c M of users beGomes persistent,

that is, every user in i E V transmits Qi packets (i.e., "dummy" packets when their queues

are empty or possess less than Qi packets). From the point of view of the nodes in the set

Mv, the nodes in V behave exactly as the persistent nodes in the set U. Note, however, that

there is a difference between the nodes in U and V in that the nodes in V receive external

packets and therefore have queues formed. We denote such a system as e(Mv,v),U. Define
-( - - -(M V)UN Mv,V)(k) = (NMv(k),NV(k)) as the queue length vector in the system e v, , . In

the next result we prove that the queues in the modified system dominate stochastically the

queue length in the original system. This property is crucial to apply our method for stability

characterization.

Proposition 2 Consider two partitions (Mvll Vd and (Mv2 , V2 ) such that VI ~ V2 • Then

for every k = 0,1, ...

N(MVl'V1)(k) ::;st N(Mv2,V2)(k)

provided N(Mv1,vl)(0) = N(M v2 ,v2)(0).

(2)

Proof. The proof follows the steps of the proof of the monotonicity property of the queue

lengths in token passing rings. For details, the reader is referred to Theorem 4 of Georgiadis

and Szpankowski [11J .•

3 Main Results

This section presents our main results. In the sequel, we construct the stability region for

the network, build some bounds on the stability region, and finally provide in a closed-form

the essential stability region of a ring with two nodes.
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3.1 Construction of the Stability Region

Consider the system eM,u consisting of a set M of regular nodes and a set U of persistent

nodes. Our goal is to establish the stability condition for the queue length vector NM(k).

By stability we mean the existence of the limiting distribution.

The process N M (k) is an imbedded Markov chain. Indeed, we have for every i EM,

Tk+l- 1

Ni(k +1) = Ni(k) - Qi(k) + L Ri(t).
t=Tk

(3)

Under (Al)-(A3) and equation (1), the above set of stochastic equations forms an M

dimensional Markov chain defined on a countable state space.

In the sequel, we will use the following property of multidimensional Markov chains defined

on a countable state space: To establish ergodicity of N M (k) it suffices to show that every

component Ni(k), i E M, ofNM(k) is substable (i.e., the one dimensional process Ni(k) is

bounded in probability as k -+ 00). This fact is easy to prove on a countable state space, and

the reader is referred to [11,20]. On a general state space, the situation is more complicated,

and one should consult Meyn and Tweedie [18]. This fact, called isolation lemma in [20],

permits the study of the stability of each queue in isolation.

We now begin the construction of the stability region (i.e., the set of node arrival rates)

of system eM,u based on the knowledge of the stability region of lower dimensional systems.

We denote such a region as SM,U. We write S(M{i},{i}),U to denote the stability region of the

dominant system e(M{i},{i}),U which arose by making the ith node to behave like a persistent

one. Note that while node i in the dominant system behaves like a persistent one, this node

still has a queue formed, and therefore region S(M{i},{i}),U consists of M-dimensional (not of

(M - I)-dimensional as the region SM{i},UU{i}) vectors. For simplicity, whenever there is no

possibility for confusion, we omit the set U from the notation in e, e, s, or S. For example,

unless otherwise specified, eM == eM,U, eMv,v == eMv,UUV, S(M{i},{i}) == S(M{i},{i}),U.

The construction of the stability region follows the steps developed in [19, 20, 11]. We

will therefore skip the details of a rigorous derivation and instead we will explain in some

detail the main idea behind each step. The construction is done inductively as follows:

Step 1: Derive the (sufficient) stability condition for a ring with one regular node and an

arbitrary set U of persistent nodes. In this case we have a single queue (at the regular node)

and the derivation of the stability condition is easy. Specifically, let us assume i be the single

regular node in the ring. Then, since the queue length N i ( k) is a Markov chain, using the
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Lyapunov test function method (d. [18]) one directly proves that the chain is ergodic if,

A" < Qi~
Z ET(Q)

(4)

where, we recall that T(Q) denotes the cycle length under the condition QMUU(1) = Q at

the beginning of a cycle. That is, ET(Q) == E[T1 IQMUV (1) = Q].

Step 2: Assume that we derived the stability region for a ring with M - 1 regular nodes and

an arbitrary set U of persistent nodes. We next seek to define the stability region of a ring

with a set M, 1M I = M, regular nodes, and an arbitrary set U of persistent nodes, in terms of

the stability regions and steady state probabilities of lower dimensional systems. This is done

by taking a set V ~ M, V ::j:. 0, of regular nodes and making them behave like persistent ones,

i.e., by considering system e(Mv,v). By Proposition 2, NM(k) == N(M,0)(k) '5.st N(Mv,v)(k),

provided that NM(O) = N(Mv,v)(O). Therefore, eM is stable whenever e(Mv,v) is, i.e.,

SM :2 S(Mv,V). Since V is arbitrary, we conclude that SM :2 UVCM S(Mv,V), where V ::j:. 0.
However, it follows again form Proposition 2 that if i E V, th~n S(M{i},{i}) :2 S(Mv,v).

Therefore,
SM:2 U S(M{i},{i}).

iEM

In fact, it turns out (see Theorem 2 below) that for the problem at hand, we have equality

(with the possible exception of boundaries) in the previous subset relation.

Step 2a. Next, we determine the stability region S(M{i},{i}) of system e(M{i},{i}), in terms

of the stability region and the steady state probabilities of system eM{i},{i} which is of

dimension M - 1, and therefore, its stability region has been determined by the inductive

assumption. It should be noted that this is the point where the "fixed but arbitrary" set U

is used in the proof since now we can claim that eM{i},{i} is a "smaller copy" of the original

system. Specifically, in system e(M{i},{i}) the set of persistent nodes is U. However, in system

eM{i},{i}, the set of persistent nodes is U U {i} ::j:. U . Therefore we could not have applied

the inductive hypothesis if the assumption in this hypothesis did not involve an arbitrary set

U. To determine S(M{i},{i}) we apply the isolation lemma, i.e., we look for conditions under

which each queue in the set M, under system e(M{i},{i}), is substable. For this, we look first

at the queues in the set M{i}, which evolve exactly as in system eM{i},{i}. Therefore, these

queues are stable as long as ,\M E SM{i},{i}, which by the inductive hypothesis is a known

region.

Step 2b: It remains to determine conditions under which the queue at node {i} is (sub )stable

III system e(M{i},{i}), which is done as follows. Assuming that ,\M E SM{i},{i}, we can
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construct a stationary and ergodic version of the queue length vector NM{i}(k) by starting

it from the stationary distribution. Provide this is done, the cycles in S(M{i},{i}), denoted as

TM{i}(k), form a stationary and ergodic sequence (by similar arguments to the one presented

in our papers [11,20]). We set TM{i} = TM{i}(I). More generally, in the following we denote

by TMv the steady-state cycle length in the system eMv,v, provided that this system is

stable.1 Since the queue length of node i satisfies (3) and the cycle lengths are stationary, an

application of Loynes' method [15] shows that the queue at node i is stable if

which completes the construction of the stability region. 0

Therefore, system e(M{i},{i}) is stable when

AM E S(M{i},{i}) = {A: AM{i} E SM{i},{i} and Ai < ~ } .
ET {i}

Repeating the previous argument for all i E M, we finally have the following result.

Theorem 1 Let

SM = U {A: AMi E SM{i},{i} and
iEM

Then, system eM is stable if A E SM.

(5)

Theorem 1 provides sufficient conditions for the stability region of the M-dimensional

system in terms of the sufficient conditions for the stability region (through SM{i},UU{i}) and

the steady-state probabilities (through ETM{i}) of M - I-dimensional systems. As we will

see below, with the exception of the boundaries, these conditions are also necessary.

Using the stability condition of the one-dimensional system as described above and iter

ating the recursive formula (5), we obtain a more explicit form for the stability region.

Corollary 1 Let ~ be the set of permutations of the set M = {I, 2, ... , M}. We write

CT = (CT(I), ... , CT(M)) to denote a particular permutation. System eM is stable if A E SM,

with

SM = U {A: A(T(I) < ET~(j(I)' 1 E M} ,
(TEE

where M(T(l) = U~~1 {CT(n)} (by convention U~=1 {CT(n)} = 0) .

(6)

1 Note that by definition, TO is the steady-state cycle length in the system 8 0,M, that is in the system where

all nodes behave like persistent nodes, i.e., node i E U u M generates Qi packets during a cycle. Therefore, in

this case we have TO == T(Q).
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We now turn our attention to the proof of the necessity of the conditions in (5). The

following decomposition is crucial for the analysis. Its proof is presented in Section 4.

Proposition 3 Let Se M be the complement of the stability region SM. Then, the following

decomposition holds

s;t = U {.x: .xMv E SMv,v ,
V~M

where V ranges over all nonempty subsets of M .

A· > Qj for all j E V}
J - ETMv (7)

In order to prove necessary stability condition we need the following general result that

is of its own interest. Its proof can also be found in the last Section 4.

Proposition 4 Let XM(n), n = 1, ... , be an M-dimensional Markov chain (not necessarily

denumerable). Assume that it is known that if the process starts from state u E ~M, then for

all i E V ~ M,

lim Xi(n) = 00.
n-+oo

Then, given any bounded one-dimensional set A, there is a state c E ~M such that Ci ~ A for

all i E V and

Pr {Xi(n) ~ A, i E V, n ~ 1 I X(1) = c} > 0 ,

that is, with positive probability all components of X(n) with indices belonging to V never

return to the set A.

We are now ready to show that with the exception of the boundaries, condition (5) is

necessary for the stability of the ring with spatial reuse. In addition, we provide a char

acterization of the instability region. Specifically, we show that with the exception of the

boundaries, when the system is unstable, we can identify regions where some queues are

substable and the remaining queue tend to infinity with positive probability. Note that while

it is easy to show that instability of one queue leads to instability of the whole system (for

a formal proof see for example [20]), in general, instability of a multidimensional Markov

chain, does not imply that at least one of the components converges to infinity. It is easy

to construct multidimensional systems where fluctuations of the queue lengths between large

and small values occur when the system is unstable. Consider for example the case of two

queues with packets of unit length, served by a single server and assume that the server serves

exhaustively the queue that it visits. If Ai < 1, i = 1,2 but Al + A2 > 1, then the system is

unstable while the queue sizes of both queues return to zero infinitely often with probability

one, for all initial states.
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Theorem 2 Systen eM is unstable if A E S;::t, where S;::t is the complement of SM mznus

the boundary points, that is,

s;t = U {A: AMv E SMv,v ,
V~M

Q. }Aj > ETLt v for all j E V , (8)

where V ranges over all nonempty subsets of M. Furthermore, in the region

S~cM(V) _- {'" ,Mv E SMv,V, '> Qj J' 11 . E V}/\ /\ Aj ETMv lor a J (9)

all queues j E Mv are substable while all queues i E V tend to infinity with positive probability.

Proof. Consider the dominant system e(Mv,v) and let A E S;::t(V). Since AMv E SMv,v,

the queue lengths NMV(k) constitute an ergodic Markov chain and starting from any state

we have
"k TMv

lim L...m=l m = ETMv.
k-+oo k

Since, in addition Aj > Qj / ETM v, an application of Loynes method [15] for instability shows

that starting from any state, limk-+oo Nj ( k) = 00 for all j E V. Setting A = [0, maxjEV Qj]

in Proposition 4, we conclude that there is a state c E RM such that if the process NMV(k)

starts from state c, then there is a set of sample paths, !1c , of positive probability such that

Nj(k) ~ Qj, j E V for all k = 1,2,.... Observe now that by definition, on the set !1c

the queues in the original system e and in the dominant system e(Mv,v) are identical and

therefore limk-+oo Nj(k) = 00 for all j E V. This implies that the Markov chain NMv(k) is

transient. The fact that all queues in Mv are substable follows directly from Proposition 2

and the ergodicity of NMV(k) .•

We present next in some detail an example that illustrates the complications involved in

the calculation of the exact stability region of the system and the strong dependence of the

stability region on the distribution of the arrival rates.

Example 1. Stability Region of a Two Node Ring with Quotas 1 and 2

Consider the ring with U = 0, Ql = 2, Q2 = 1 and fi( s) = s, i = 1,2 (Ji( s) is defined in

condition (A1) in Section 2. The stability region can be expressed as follows

(10)

where T{i} is the steady-state cycle length in a system with node {i} being regular and the

other one persistent.
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Let us assume the simplest destination probabilities, namely P12 = Pn = 1. Then the

computation ofthe first set on the right hand side in (10) is straightforward. Indeed, observe

that by the choice of the destination probabilities, a node transmits in its outgoing link only

packets originated at itself. The interaction between the two nodes in this case is due only

to the fact that one node may have to wait until the other one completes transmission of its

quota. Therefore, we have that (recall the definitions after formula (1))

where Hi(Q1(k),Q2(k)) represents the number of packets out of Q1(k) + Q2(k) that will

pass node i. If nodes 1 and 2 are persistent, we have H1((h,Q2) = 2 and H2(QbQ2) = 1.

Therefore,

T 0 = T(QbQ2) = max{2, I} = 2 .

If on the other hand node 1 is persistent while node 2 is regular, then since Q2(k) ~ Q2 ~ 1

we again have

Therefore,

{1,2} {2 1 }
51 = A1 < ET{2} ,A2 < ET{0} = {A1 < 1 , A2 < 0.5} .

We consider now the second set 5P,2}. The quantity that needs to be determined in this

case is the expected cycle length in steady state, when node 2 is persistent and node 1 is

regular, that is, ET{l}. Let Nk = N1(k) be the queue size at node 1 at the beginning of the

kth cycle. Let R(z) be the z-transform of R1(1), the number of arrivals to node 1 in the first

slot (recall that we assume that {R1(k)}k=1 are LLd.). Let 1= Tk, be the time when the kth

cycle starts. Then, it is easy to see that

(Nk - 2)+ + Rzl{Nk::;l} + (Rz + RZ+l)1{Nk2:2}

(Nk - 2)+ + Rz +RZ+ll{Nk2:2}. (11)

Let now 1rn denote the steady state probability that there are n packets in the queue of

node 1 at the beginning of a cycle. Taking z- transforms in the last equation and considering

the steady state, we have

N(z) R(z) (Pr{N ~ I} +E (zN-2IN ~ 2) R(z) Pr{N ~ 2})

R(z) (1rO +1r1 +R(z)E1rn zn
-

2)

(1ro + 1r1)R(z) + R2(z)z-2 N(z) - (1roz-2 + 1r1Z-1) R2(z),

12
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where N(z) is the generating function of Nk in the steady state. From the above we conclude

that

(13)

Using standard arguments based on the analyticity of N(z), we find that the probabilities

11"0, 11"1, are determined by the system of equations,

where Za is the unique root in [-1,0) of the equation

R(z) = -z,

(14)

(15)

(16)

Since the cycle length is either 1 if there is a or 1 packet in the queue of node 1 at the

beginning of a cycle, and 2 otherwise, we can easily compute the average steady state cycle

length as follows

and therefore, the second subset in (10) is equal to

S
{I,2} _ {\ \ 2za +(1 - Al)Za - (1 - AI)}
2 - Al < 1, A2 < 4

Za

The root Za of (16) depends on the distribution of the arrival process to node 1 and as a

result the same is true for the stability region. To demonstrate this strong dependence, we

plotted in Figure 1 the stability regions for the following arrival distributions to node 1:

1. Dl = {Pr{R1(1) = a}, Pr{Rl(l) = 1}, Pr{R1(1) = 2}} = {a, 2a(1 - a), (1 - a)2},

a ~ a ~ 1. This is binomial with parameters (a, 2) ;

As one can observe, the region ABED is common for the three arrival distributions.

However, the rest ofthe region depends strongly on the arrival distribution. From (16) it can

be seen that ifthe number of arrivals in a slot is always even, that is, if Pr{R1(1) = 2k+1} = a
for all integer k ~ 1, then Za = -1 and the stability region is ABED. On the other hand,

when the number of arrivals during a slot is either aor 1, i.e., Pr{R1(1) = a} + Pr{R1(1) =

13
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Figure 1: Stability region for the ring of Example 1.

I} = 1, it can be easily seen that the stability region is ABCD. As we will see in the next

section, the region ABED is a subset of the stability region for any arrival distribution. 0

The previous example also shows the price that has to be paid in order to achieve fairness

with the quota mechanism. The maximal stability region of the ring with spatial reuse (i.e.,

the region inside which there is always at least one policy that can stabilize the system) is

determined by (d. [10, 13])

M

S = {oX: L Aiaij < 1 for j EM}
i=l

where aij = Pr{a packet generated by node i has to cross node n. In [13] we presented a

policy whose stability region is S. Under the latter policy, node are assigned quota dynami

cally by setting Qi(k) = Ni(k) (i.e., at the beginning of the kth cycle the quota assigned to

node i is equal to the queue length in this node at the beginning of the cycle). In Example

1, region S corresponds to the area ABCD. We see that the stability region under the fixed

quota policy is a strict subset of S. It should be mentioned, however, that under the policy

that dynamically adapts the node quota, an overloaded node will cause an overload to all

other nodes, a situation that does not occur under the fixed quota policy.

14



3.2 Bounds Through Linear Programming

Example 1 demonstrates that even in the simplest case the stability region of the system de

pends strongly on the distribution of the arrival process. While in this case the computations

are feasible, as the number of nodes and/or the quota sizes increase the computation of the

exact stability region quickly becomes intractable.

The strong dependence of the stability region on the arrival rate distribution and the

complications it implies, makes it worthwhile to search for the following regions of arrival

rates.

Essential Stability Region (ESR): The set of arrival rates AM with the prop

erty that the system is stable under any arrival distributions as long as the nodes

have the corresponding arrival rates AM.

Absolute Stability Region (ASR): The set of arrival rates AM with the prop

erty that there is at least one set of node arrival distributions with corresponding

rates AM such that the system is stable.

The ESR is the intersection of the stability regions under all arrival distribution while

the ASR is the union of these stability regions. Clearly, ESR~ASR. The ESR is useful in

situations where the arrival distributions are not known a priori, a common situation in many

practical systems. Besides the theoretical interest of the ASR as the region outside which

the system cannot be stabilized under any arrival distribution with the given arrival rates, it

might also have practical implications when the input traffic can be controlled before entering

the network.

Based on Theorem 1 and Corollary 1, we will now develop bounds for the ESR and ASR

respectively, that depend only on the average conditional cycle lengths ET(q) which are easier

to compute than the steady state probabilities appearing in Theorem 1. We must underline

that the conditional cycle lengths are fundamental quantities which can be computed without

knowing the steady state probabilities. The computation of ET(q) for small number of nodes

can be done directly based on (1). For large nuber of nodes and large quota, computing even

ET(q) is not easy, however, asymptotic results for theses quantities exist [10]. The bounds

are derived by associating the stability of the system to a solution of some linear programming

optimization problems whose constraints are derived from the flow balance equations.

Our first goal is to find an upper bound on the average steady-state cycle length ETY

in system e(Y,v) where 9 = Mv, that is independent of the arrival distribution. As will be

seen, this leads to a subset of the ESR. When A E SY, then by definition the nodes in the

set 9 constitute a stable system. Let ?fen), n = {nj, j E g} be the steady state probability

15



of the process of node queue lengths at the beginning of a cycle and for lEO define the one

dimensional distribution

1r1(n) = L 1r(n).
n,n/=n

(17)

Standard arguments based on the regenerative theorem can be used (see e.g., [1, 11] for

similar results) to show that the following flow equations are satisfied for the system consisting

of the nodes in O.
=

AIET9 = L ql(n)1rI(n),
n=l

lEO, (18)

where ql (n) = min {II(n), QI}' is the number of local packets transmitted by node I in a

cycle when the number of packets at that node at the beginning of the cycle is n. Equation

(18) states simply that in steady state the average number of arrivals to node I in a cycle is

equal to the average number of packets served by node I during a cycle.

Let now ET9 (q), q = {qj : j E O} be the average conditional cycle length in system

e(9,V) when node j E 0 transmits qj packets in a cycle (and by definition a node j E U uV

transmits Qj packets). Then the average steady state cycle length satisfies,

9
ET9 = LET (q(n))1r(n),

n
(19)

where q(n) = {qj(nj), j EO}. Define next for m = {mj, j EO}, 0 ::; mj ::; Qj,

{
1r(m) if 0::; mj ::; Qj - 1, for all j E 0

x(m) = ~ ~
Lm{~Qj, jEX:; 1r(m) if mj = Qj, j E K ~ 0 and 0::; mj ::; Qj - 1, j E Ox:;.

In terms of these variables, and based on the fact that qj(nj) = Qj when nj 2:: Qj, we can

rewrite the equations in (18) and (19) as follows.

Al Lm ET9(q(m))x(m)

LmX(m)

x(m)

L~;l ql(n) Lm, m/=n x(m),
1

> 0

(20)

where m = {mj, j EO}, 0::; nj ::; Qj.

From the above discussion we see that with each partition (0, V) of M we can associate a

polytope ~(9,v) defined by the constraints in (20). Let us define T~ax as the solution of the

following linear programming optimization problem.

T~ax = max {LET9(q(m))x(m)}
x(m)Ep(9,v) m

16
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Notice that the solution to this optimization problem requires only the knowledge of the

average values of the conditional cycle lengths.

Using the notation from Corollary 1, let us define the two regions

stt = {A:
L;t = {A:

From the definition of Tfl,ax we have

\ QO"(I) l M}
Ao-(l) < ETMO"(I) ' E

>'0-(1) < ~~l?l)' l EM}
Tmax

(22)

which implies that for any permutation 0"(-),

Defining next

Tf:un = min {EETY(q(n))x(n)} ,
x(n)EpCQ,v) n

and using similar arguments we have that

where

M _ {,. \ Qo-(l) M}
Uo- - A. Ao-(l) < A10"(1) , l E .

TIIlln

In conclusion we have the following theorem.

(23)

(24)

(25)

Theorem 3 Let us define Tfl,ax and Tf:unas in (21) and (24) respectively. Then, we obtain

a lower bound LM on the stability region SM as follows

LM=UL~~US~=SM,
0- 0-

where L;t is defined in (22). Similarly, an upper bound is,

SM = US~ ~ UU~ = UM ,
0- 0-

where utt is defined in (25).

Since by construction any arrival vector A that belongs to LM results in a stable system,

we conclude that LM is in fact a subset of ESR. Similarly, UM is a superset of ASR.
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Example 2. Again the Ring From Example 1.

Consider the ring in Example 1. Referring to Figure 1, it can be easily checked that in this

case the lower bound on the ESR is the region ABED, while the upper bound is the region

ABCD. For the same ring, assume now that the destination probabilities are P12 = P21 = .75.

Referring to Figure 2, the bounds on the ESR and ASR are the regions ABED and ABEFD

respectively. For arrivals rates in ABED the system is stable irrespective on the distribution

of the arrivals. For rates outside the region ABEFD, there is no distribution of arrivals that

can stabilize the system. As we will see in the next section, the region ABED is in fact the

ESR for the system with two nodes. 0

3.3 ESR for the Ring with Two Nodes

When fi( s) = s (the most interesting case in practice) and the ring contains two nodes, that

is, when M = {I, 2} and U = 0, the Essential Stability Region can be computed explicitly in

terms of the conditional cycle lengths for arbitrary quota sizes. This is due to the following

property of the conditional cycle lengths, which we prove in the Appendix.

Lemma 1 The functions

<p(n) := ET(Ql' n) - ET(Ql' 0),
n

18



1jJ(n) := ET(n,Q2) - ET(0,Q2),
n

are nondecreasing.•

Based on Lemma 1 we can now determine the ESR for the ring with two nodes.

Theorem 4 The Essential Stability Region for system e{I,2} coincides with the lower bound

in Theorem 3 and is given by

(26)

(27)

Proof. The subset of lower bound in Theorem 3 determined by the permutation 0"(1) =

1, 0"(2) = 2 is

where

{

Q1 }{I} ~
Tmax = max L ET(n,Q2)x(n) ,

{x(n)}Ep( {1},{2}) n=1

and the polytope p({I},{2}) is defined by the constraints,

(28)

We will show that the solution to the above maximization problem is obtained at the

point x* defined as x*( n) = 0, 1::; n ::; Ql - 1, and

x*(O)
Ql + Q2A.l - ET(Ql' (2)A.l

QIA.l

(29)

(30)

It will follow that

{I} ~ * ~ ~ * ~ Ql Q2
Tmax = ET(0,Q2)X (0) +ET(Ql,Q2)X (Ql) = ~ ~ ~ ~ ,

Ql + Q2A.l - ET(Ql,Q2)A.l

19



(31)

and therefore,

, < 02 _ 1 +' 02 _ ET(01, (2) ,
/\2 {I} - /\1 ~ ~ /\1

Tmax Q1 Q1

which is equivalent to the second inequality in (26).

Since entirely analogous arguments hold for the permutation 0"(1) = 2, 0"(2) = 1, we

conclude that region L is a subset of ESR. To show that it is indeed equal to the ESR, it

is sufficient to provide arrival distributions under which the described region is actually the

stability region of the ring. But this can easily be done, by considering that the number of

packets arriving at node i in a slot is either 0 or Oi. In this case, the number of packets

at node i at the beginning of a cycle is either 0 or a multiple of Oi. For the permutation

0"(1) = 1, 0"(2) = 2, this implies that 1l"l(n) = 0, 1 ~ n ~ 01 - 1. But since the variables

x(n) = 1l"l(n), 0 ~ n ~ 01 - 1, and X(Ol) =L::=Ql 1l"l(n) have to satisfy the flow equations

for node 1, i.e., constraints (28), we conclude that 1l"1(0) = x*(O) and L::=Ql 1l"l(n) = X*(Ol).

It follows that Ti~ = ET{l}, which implies that the ESR for this system is the one described

in the theorem.

We now show that x* is the solution to the maximization problem by considering the

associated Kuhn-Tucker conditions (d. [14]). We need to show the existence of unique

Un ~ 0, 0 ~ n ~ 01, (inequality constraints) and £1, £2 (equality constraints) such that

Since Al < (OdET(01, (2), it follows that x*(O) > 0, x*((1) > 0 and therefore, UQ =
u Q1 = O. This implies that ii, i = 1,2 are determined uniquely by the solution ofthe system:

A1ET(0, (2)£1 + £2

(A1 ET(01,02)-Q1)£1 + £2

Next, Un, 0 < n < 01, are determined from

ET(0,02)

ET(Q1,02),
(32)

(33)

Substituting the values of £i determined from (32) in (33), we find that the condition that

the Un are nonnegative is equivalent to the condition

(34)

The truth of (34) follows from Lemma 1. •
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4 Proof of Instability Results

In this section we prove two auxiliary results, namely, Proposition 3 (d. Subsection 4.1) and

Proposition 4 (d. Subsection 4.2) that are crucial for our main instability result, namely

Theorem 2. These propositions allow us to conclude the instability of the system from the

instability of the dominant one and may be useful in other situation as well.

4.1 The Decomposition Result

We start with the decomposition formula (7) of Proposition 3. First, we need two simple

facts.

Lemma 2 Let VI ~ V2 ~ M. Then,

Proof. The proof follows directly from Propositions 1 and 2.•

Lemma 3 Let VI, V2 be subsets of M such that VI - V2 f- 0. Then,

where

Proof. Let Vo = VI - V2 . By (6) of Corollary 1 we can write SMV
2 as a union of sets,

where in each CO" we have the constraint that for some i E Vo,

(35)

for some set V 2 VI U V2. But since by Lemma 2, ETMv > ETMvl, constraint (35)

contradicts with the constraint

which Ai has to satisfy in the set BV1' •

Now we are ready to establish our decomposition formula (7).
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Proposition 3 Let stt be the complement of the stability region SM. Then, the following

decomposition holds

s~ = U {A: AMv E SM v ,
V~M

A· > Qj for all j E V} .
J - ETMv

where V ranges over all nonempty subsets of M.

Proof. Let cI>n be the set of all subsets V of M with cardinality IVI = n ::; M and cI>n =
Uk=l cI>k. We will show that we can write

where

s:' = C~l. s:,v) UC~n Bv) , (36)

Bv = {A: AMv E RMv, Aj ~ E~Ltv for all j E V} .

Notice that setting n = M in (36) is equivalent to the desired result. The proof of (36) will

be by induction on n.

For n = 1, taking complements of (5) in Theorem 1 we have

s~ = n {Di,l u Di,2} = U{ n Di,Si} = { n Di,l} u{n Di,Si} ' (37)
iEM S iEM iEM s:;i:l iEM

where s = (Sl, ... ,SM), Si = 1 or 2, and 1 = (1,1, ... ,1),

and

D· 2 = {A: AM{i} E SM{i} A. > Qi }.
t, , t - ETM{i}

Now, by Lemma 3 we have that if i "=/: j, then Di,2 n SM{j} = 0. This implies that for i "=/: j,

Di,2 n Dj,2 = 0 and Di,2 n Dj,l = Di,2, This in turn implies that if Si = 2 and Sj = 1 for all

j "=/: i, then niDi,Si = Di,2 while if Si = 2 and Sj = 2 for at least one j "=/: i, then ni Di,Si = 0.
Therefore, we can write (37) as follows.

s~ = (.n Di,l) U(.U Di,2)
tEM tEM

The last equality is equivalent to (36) for n = 1.

Assume now that (36) is true for n < M. We will show that
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which implies (36) for n + 1. Exactly as in the case n = 1, we can write

s;tv = EV,l U EV,2'

where
E - n SMVU{i}V,l - c

iEMv

and

EV,2 = U {A: AMvu{i} E SMVU{i} A' > Qi }
, ,- ETMVU{i} .

iEMv

Therefore, we again have,

n s;tv =u{ n EV,s} = { n EV,l} u{ n Ev,smeVl} '
VE<f!n S VE<f!n VE<f!n s:;tl VE<f!n

where s = (Sl, ... , sc~n)' Si = 1 or 2 and m(V) is a one-to-one mapping from <Pn to

{I, ... , (~)}. It is easy to see that

n E - n SMvV,l - c'

VE<f!n VE<f!n+l

It remains to show that

u{n Ev,smeVl} = U Bv
s#l VE<f!n VE<f!n+1

For this we can use arguments similar to the case n = 1 after observing that for V E <Pn+l'

nEV-{i},2 = Bv·
iEV

This completes the proof. •

4.2 A General Result For Unstable Markov Chains

Here we establish Proposition 4 concerning the probabilistic behavior of an unstable Markov

chain. For convenience, we repeat below the proposition.

Proposition 4 Let XM(n), n = 1, ... , be an M-dimensional Markov chain (not necessarily

denumerable). Assume that it is known that if the process starts from state U E RM, then for

all i E V ~ M,

lim Xi(n) = 00.
n->oo

Then, given any bounded one-dimensional set A, there is a state c E RM such that Ci ~ A for

all i E V and

Pr{Xi(n) ~ A, i E V, n ~ 11 X(I) = c} > 0 ,
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that is, with positive probability all components of X(n) with indices belonging to V never

return to the set A.

Proof. Let B = {s E ~M : Si E A, for some i E V}. Assume that

Pr{X(n) ~ B, for all n ~ 11 X(l) = s} = 0

for all states s ~ B. This implies that for all states s,

Pr { X(n) E B, for some n ~ 1 I X( 1) = s} = 1.

We will show now that (38) implies that for any state s,

Pr{X(n) E B, Lo.1 X(l) = s} = 1.

(38)

Let Gl = {w : X(n) E B for at least I times}. Since {X(n) E B, Lo.} = n~l Gl, we have that

Pr {Xi(n) E B, Lo./ X(l) = s} = lim Pr{ Gil X(l) = s}.
1-+00

Therefore, it suffices to show that Pr {Gil X(l) = s} = 1, I ~ 1. From (38) we see that this

is true for I = 1. Assume now that it is true for l. Define the random time T as the first time

that the process visits the set B for the lth time. Since Pr {Gil X(l) = s} = 1, we conclude

that T is finite almost surely. Therefore,

Pr{Gl+1 IX(1)=s} = Pr{X(T+n)EBforsomen~lIX(l)=s}

= JPr{X(T +n) E B for some n ~ 11 X(T +1) = z, X(l) = s }dPr{zIX(l) = s}
(39)

Since T is a stopping time and X(n) is Markov, we conclude that

Pr {X(T + n) E B for some n ~ 11 X(T + 1) = z , X(1) = s }

= Pr {X(n) E B, for some n ~ 11 X(l) = z}

=1.

This together with (39) implies that Pr {Gl+l1 X(l) = s} = 1.

Since Pr{X(n) E B, Lo.1 X(l) = s} = 1 and IVI < 00, starting from any state at least

one of the components j E V of the Markov chain visits the set A infinitely often. But this

contradicts the assumption that starting from state u,

lim Xi(n) = 00, i E V.
n-+oo

This completes the proof.•
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5 Conelusions

We provided the necessary and sufficient conditions for the stability of a ring with partial

reuse. These conditions define implicitly the stability region of the system. Specifically, the

stability region of an M-dimensional system is defined in terms of the stability regions and

the steady state probabilities of (M - 1)-dimensional systems. Therefore, in principle, if the

stability region of the system with 1 node is known, the stability region of higher dimensional

systems can be determined. Numerical calculations, however, quickly become intractable

due to the complexity of the stability region of such a system. We developed bounds on the

stability region using a Linear Programming approach, where only the conditional average

cycle lengths (not steady state) are used.

The results presented here can be directly applied to any multi-dimensional queueing

system that operates in cycles according to the rules described in (A1) in Section 2. The only

quantity that will change is the formula for the conditional cycle lengths (d. (1)) which is

the fundamental quantity determined by the operation of the policy for serving the various

queues. Whether the developed bounds are easy to calculate depends on how easy it is to

calculate the conditional expected cycle lengths.

We saw that the algorithm operating with fixed quota results in reduced stability region

relative to the algorithm studied in [13], where the quota vary dynamically. However, as a

result of keeping the quota fixed, no node is ever blocked for a long time from transmitting

its locally generated packets. In practice this is significant enough to justify some loss of

throughput. Besides, it has been shown in [10] that if the statistics of packet destination

process Pij is known, then the quota can be chosen so that each node acquires its required

throughput. In the absence of such knowledge, the problem becomes more difficult. In [5],

mechanisms has been proposed by which the nodes adjust their quota according to ring load

conditions. Simulation results show that these mechanisms result in increase in throughput

while still guaranteeing that a node is not blocked for a long time from transmitting its locally

generated packets.
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APPENDIX

Proof of Lemma 1

In this appendix we prove Lemma 1 which we repeat below for convenience.

Lemma 1 The functions

<p(n) := ET(Q1' n) - ET(Ql, 0),
n

'lj;(n) := ET(n,Q2) - ET(0,Q2),
n

are nondecreasing.

Proof. Let di,k be the destination of the kth packet transmitted by node i, i = 1,2, and let

In other words, Xk is 1 if the kth packet generated by node 2 will have to go through node

1 and similarly for Yk. We know that (see (1))

T(Ql, n) = max {Q1 +t Xk,
k=l

and therefore,

T(Q .. n) - T(QI'O) max {t, X k, n - Qd~ Yk}

= max{txk' n-v},
k=l

where v = Q1 - L~;'l Yk, (therefore, 0 S; v S; (1). Let Z = Lk=l Xk and

W=nmax{Z+Xn+1 , n+1-v}-(n+1)max{Z, n-v}.

To show that <p(.) is nondecreasing, it is sufficient to show that

EW ~ 0, 1 < n < Q2.

Consider two cases

1. Z > n - v. Then,

W = nmax{Z +X n+1 , (n +1) - v} - (n + l)Z

= n max {Xn+1 , n - v - Z} - Z

~ nXn+1 - Z.
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2. 0 ~ Z ~ n - v. Then,

W = nmax{Z +Xn+I , n+ 1- v} - (n+ 1)(n - v)

= max {nXn+ I + n (Z - (n - v)) - (n - v), v}

:2: v. (43)

LFrom (42), (43) we have that

EW > E ((nXn+I - Z)l{z>n-v}) +vE (l{o~z~n-v})

nq22 Pr {Z > n - v} - E (Zl {z>n-v}) +v Pr {O ~ Z ~ n - v} , (44)

where in the last equality we used the fact that the random variable Z and Xn+I are inde

pendent and therefore, E(Xn+dz>n-v) = q22 Pr {Z > n - v}. To simplify the notation set

q22 = q. Since by definition EZ = nq, we have from (44)

EW:2: E (ZI{o~z~n-v}) - (nq - v)Pr{O ~ Z ~ n - v},

or, setting m = n - v,

EW:2: E (ZI{o~Z~m}) - (nq - n + m) Pr{O ~ Z ~ m},

To show that EW :2: 0, it is sufficient to have

or equivalently,

E (ZI {O ~ Z ~ m}) :2: nq - n + m.

Recalling that Z = L:k=I Xk and that Xk take only the values 0,1 we have

E(ZI{O ~ Z ~ m}) = nE (XII {EXi ~ m})

n Pr { X I = 11{E Xk ~ m} }
Pr {X I = 1, L:k=2 X k ~ m - I}

n Pr{L:k=I Xk ~ m}

q Pr {L:~;::;i X k ~ m - 1}

n Pr {L:k=I Xk ~ m}
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In the last equality we used again the fact that Xk, k = 1, ... , n are Li.d. The probabilities

in the last equality are related as follows.

pr{txk ~ m} =
k=l

pr{EXk ~ m, EXk ~ m-1} +pr{~Xk ~ m,

{

n-l {{ n-l }
Pr L Xk ~ m - 1 +Pr X n = 0, L Xk = m

k=l k=l

pr{I: Xk ~ m-1} + (1- q)pr{I: Xk = m}.
k=l k=l

Using these facts we find after some simple calculations that in order to prove (47) it is

sufficient to prove

n-mpr{txk~m} 2:
n k=l

To show that (48) holds argue as follows

n - mPr{t Xk = m}
m k=l

n - m n! m( )n-m----q 1-q
n m!(n - m)!

(1 _ q) (n - 1)! qm(1- qt-m-1
m!(n-m-1)!

(1 - q) Pr{I: Xk = m}
k=l

> q(1 - q) Pr{E Xk = m} .

This completes the proof. •
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