20 research outputs found

    A method for identification of the methylation level of CpG islands from NGS data

    Get PDF
    In the course of sample preparation for Next Generation Sequencing (NGS), DNA is fragmented by various methods. Fragmentation shows a persistent bias with regard to the cleavage rates of various dinucleotides. With the exception of CpG dinucleotides the previously described biases were consistent with results of the DNA cleavage in solution. Here we computed cleavage rates of all dinucleotides including the methylated CpG and unmethylated CpG dinucleotides using data of the Whole Genome Sequencing datasets of the 1000 Genomes project. We found that the cleavage rate of CpG is significantly higher for the methylated CpG dinucleotides. Using this information, we developed a classifier for distinguishing cancer and healthy tissues based on their CpG islands statuses of the fragmentation. A simple Support Vector Machine classifier based on this algorithm shows an accuracy of 84%. The proposed method allows the detection of epigenetic markers purely based on mechanochemical DNA fragmentation, which can be detected by a simple analysis of the NGS sequencing data

    Downregulation of Ribosomal Protein Genes Is Revealed in a Model of Rat Hippocampal Neuronal Culture Activation with GABA(A)R/GlyRa2 Antagonist Picrotoxin

    No full text
    Long-read transcriptome sequencing provides us with a convenient tool for the thorough study of biological processes such as neuronal plasticity. Here, we aimed to perform transcriptional profiling of rat hippocampal primary neuron cultures after stimulation with picrotoxin (PTX) to further understand molecular mechanisms of neuronal activation. To overcome the limitations of short-read RNA-Seq approaches, we performed an Oxford Nanopore Technologies MinION-based long-read sequencing and transcriptome assembly of rat primary hippocampal culture mRNA at three time points after the PTX activation. We used a specific approach to exclude uncapped mRNAs during sample preparation. Overall, we found 23,652 novel transcripts in comparison to reference annotations, out of which ~6000 were entirely novel and mostly transposon-derived loci. Analysis of differentially expressed genes (DEG) showed that 3046 genes were differentially expressed, of which 2037 were upregulated and 1009 were downregulated at 30 min after the PTX application, with only 446 and 13 genes differentially expressed at 1 h and 5 h time points, respectively. Most notably, multiple genes encoding ribosomal proteins, with a high basal expression level, were downregulated after 30 min incubation with PTX; we suggest that this indicates redistribution of transcriptional resources towards activity-induced genes. Novel loci and isoforms observed in this study may help us further understand the functional mRNA repertoire in neuronal plasticity processes. Together with other NGS techniques, differential gene expression analysis of sequencing data obtained using MinION platform might provide a simple method to optimize further study of neuronal plasticity

    Chromosomal Translocations in NK-Cell Lymphomas Originate from Inter-Chromosomal Contacts of Active rDNA Clusters Possessing Hot Spots of DSBs

    No full text
    Endogenous hot spots of DNA double-strand breaks (DSBs) are tightly linked with transcription patterns and cancer. There are nine hot spots of DSBs (denoted Pleiades) in human rDNA units that are located exclusively inside the intergenic spacer (IGS). Profiles of Pleiades coincide with the profiles of Ξ³-H2AX, suggesting a high level of in vivo breakage inside rDNA genes. The data were confirmed by microscopic observation of the largest Ξ³-H2AX foci inside nucleoli in interphase chromosomes. Circular chromosome conformation capture (4C) data indicate that the rDNA units often make contact with a specific set of chromosomal regions containing genes that are involved in differentiation and cancer. Interestingly, these regions also often possess hot spots of DSBs that provide the potential for Robertsonian and oncogenic translocations. In this study, we searched for translocations in which rDNA clusters are involved. The whole genome sequence (WGS) data of normal T cells and NK-cell lymphomas from the same individuals revealed numerous translocations in which Pleiades were involved. The sites of these translocations in normal T cells and in the lymphomas were mostly different, although there were also some common sites. The genes at translocations in normal cells and in lymphomas are associated with predominantly non-overlapping lists of genes that are depleted with silenced genes. Our data indicate that rDNA-mediated translocations occur at about the same frequency in the normal T cells and NK-lymphoma cells but differ at particular sites that correspond to open chromatin. We conclude that oncogenic translocations lead to dysregulation of a specific set of genes controlling development. In normal T cells and in NK cells, there are hot spots of translocations at sites possessing strong H3K27ac marks. The data indicate that Pleiades are involved in rDNA-mediated translocation

    Mining gene expression data for pollutants (dioxin, toluene, formaldehyde) and low dose of gamma-irradiation.

    Get PDF
    General and specific effects of molecular genetic responses to adverse environmental factors are not well understood. This study examines genome-wide gene expression profiles of Drosophila melanogaster in response to ionizing radiation, formaldehyde, toluene, and 2,3,7,8-tetrachlorodibenzo-p-dioxin. We performed RNA-seq analysis on 25,415 transcripts to measure the change in gene expression in males and females separately. An analysis of the genes unique to each treatment yielded a list of genes as a gene expression signature. In the case of radiation exposure, both sexes exhibited a reproducible increase in their expression of the transcription factors sugarbabe and tramtrack. The influence of dioxin up-regulated metabolic genes, such as anachronism, CG16727, and several genes with unknown function. Toluene activated a gene involved in the response to the toxins, Cyp12d1-p; the transcription factor Fer3's gene; the metabolic genes CG2065, CG30427, and CG34447; and the genes Spn28Da and Spn3, which are responsible for reproduction and immunity. All significantly differentially expressed genes, including those shared among the stressors, can be divided into gene groups using Gene Ontology Biological Process identifiers. These gene groups are related to defense response, biological regulation, the cell cycle, metabolic process, and circadian rhythms. KEGG molecular pathway analysis revealed alteration of the Notch signaling pathway, TGF-beta signaling pathway, proteasome, basal transcription factors, nucleotide excision repair, Jak-STAT signaling pathway, circadian rhythm, Hippo signaling pathway, mTOR signaling pathway, ribosome, mismatch repair, RNA polymerase, mRNA surveillance pathway, Hedgehog signaling pathway, and DNA replication genes. Females and, to a lesser extent, males actively metabolize xenobiotics by the action of cytochrome P450 when under the influence of dioxin and toluene. Finally, in this work we obtained gene expression signatures pollutants (dioxin, toluene), low dose of gamma-irradiation and common molecular pathways for different kind of stressors

    Wide-scale identification of novel/eliminated genes responsible for evolutionary transformations

    No full text
    Abstract Background It is generally accepted that most evolutionary transformations at the phenotype level are associated either with rearrangements of genomic regulatory elements, which control the activity of gene networks, or with changes in the amino acid contents of proteins. Recently, evidence has accumulated that significant evolutionary transformations could also be associated with the loss/emergence of whole genes. The targeted identification of such genes is a challenging problem for both bioinformatics and evo-devo research. Results To solve this problem we propose the WINEGRET method, named after the first letters of the title. Its main idea is to search for genes that satisfy two requirements: first, the desired genes were lost/emerged at the same evolutionary stage at which the phenotypic trait of interest was lost/emerged, and second, the expression of these genes changes significantly during the development of the trait of interest in the model organism. To verify the first requirement, we do not use existing databases of orthologs, but rely purely on gene homology and local synteny by using some novel quickly computable conditions. Genes satisfying the second requirement are found by deep RNA sequencing. As a proof of principle, we used our method to find genes absent in extant amniotes (reptiles, birds, mammals) but present in anamniotes (fish and amphibians), in which these genes are involved in the regeneration of large body appendages. As a result, 57 genes were identified. For three of them, c-c motif chemokine 4, eotaxin-like, and a previously unknown gene called here sod4, essential roles for tail regeneration were demonstrated. Noteworthy, we established that the latter gene belongs to a novel family of Cu/Zn-superoxide dismutases lost by amniotes, SOD4. Conclusions We present a method for targeted identification of genes whose loss/emergence in evolution could be associated with the loss/emergence of a phenotypic trait of interest. In a proof-of-principle study, we identified genes absent in amniotes that participate in body appendage regeneration in anamniotes. Our method provides a wide range of opportunities for studying the relationship between the loss/emergence of phenotypic traits and the loss/emergence of specific genes in evolution

    Zebrafish pigment cells develop directly from persistent highly multipotent progenitors

    No full text
    Neural crest cells are highly multipotent stem cells, but it remains unclear how their fate restriction to specific fates occurs. The direct fate restriction model hypothesises that migrating cells maintain full multipotency, whilst progressive fate restriction envisages fully multipotent cells transitioning to partially-restricted intermediates before committing to individual fates. Using zebrafish pigment cell development as a model, we show applying NanoString hybridization single cell transcriptional profiling and RNAscope in situ hybridization that neural crest cells retain broad multipotency throughout migration and even in post-migratory cells in vivo, with no evidence for partially-restricted intermediates. We find that leukocyte tyrosine kinase early expression marks a multipotent stage, with signalling driving iridophore differentiation through repression of fate-specific transcription factors for other fates. We reconcile the direct and progressive fate restriction models by proposing that pigment cell development occurs directly, but dynamically, from a highly multipotent state, consistent with our recently-proposed Cyclical Fate Restriction model.Published versionThis work was supported by Uehara Memorial Foundation (MN), Wellcome Trust VIP awards (M.N.), and BBSRC grants BB/ L00769X/1(R.N.K., H.S., T.S.) and BB/S015906/1 (R.N.K., J.H.P.D., K.C.S., G.B.) and BB/ L007789/1 and BB/S01604X/1 (A.R.), National Natural Science Foundation of China, Grant Number: 31000542 (X.Y.), Royal Society International Exchange Cost Share 2017 Russia award (R.N.K.), Russian Foundation of Basic Researcher grant 17-54-10014 (V.J.M.), Ministry of Science and Higher Education of the Russian Federation Grant number 075-15-2021-601 (V.J.M.), and University of Bath PhD Studentship and ORS award (T.J.C.)

    Gene-concept networks by gene ontology analysis for toluene treated males and females.

    No full text
    <p><i>Genes, up-regulated in males:</i> Upregulated genes were known to be involved in the protein folding, circadian sleep/wake regulation, positive regulation of transcription from RNA polymerase II promoter and proteolysis regulation. <i>Genes, down-regulated in males:</i> The large number of downregulated genes in this treatment were functionally clustered to four main groups: response to stress (including related functional category of response to heat), response to biotic stimulus, proteolysis and oxidation-reduction process. <i>Genes, up-regulated in females:</i> The overexpressed genes were functionally clustered into four main clusters: oxidation-reduction process, proteolysis, response to stress, response to biotic stimulus and the smaller cluster of cellular response to heat. <i>Genes, down-regulated in females:</i> The cell communication functional category was extremely downregulated in this treatment. Smaller gene clusters, involved in the phototransduction and regulation of response to external stimulus, were also revealed.</p

    Gene-concept networks by gene ontology analysis for dioxin treated males and females.

    No full text
    <p><i>Genes, up-regulated in males:</i> Most of upregulated gene the involved in biological regulation, G-protein coupled receptor signaling pathway and regulation of cell differentiation. Smaller functional groups of genes, involved in the regulation of oskar mRNA translation, spermatogenesis, regulation of reproductive process and phospholipase C-activating G-protein coupled receptor signaling pathway were also upregulated. <i>Genes, down-regulated in males:</i> The genes characterized with decreased expression were mostly known to be involved in the cellular respiration and related functional category of mitochondrial ATP synthesis coupled electron transport. Small independent cluster of carboxylic acid metabolic process was also downregulated. <i>Genes, up-regulated in females:</i> Most of genes were annotated as involved in the processes of the proteolysis, defense response, and response to biotic stimulus. The smaller clusters of cellular response to heat and humoral immune response were revealed. <i>Genes, down-regulated in females:</i> The most of downregulated genes were annotated as involved in cell communication. Related functional categories, such as homophilic cell adhesion, were also revealed.</p
    corecore