85 research outputs found

    Fundamental Principles of Neural Organization of Cognition

    Get PDF
    The manuscript advances a hypothesis that there are few fundamental principles of neural organization of cognition, which explain several wide areas of the cognitive functioning. We summarize the fundamental principles, experimental, theoretical, and modeling evidence for these principles, relate them to hypothetical neural mechanisms, and made a number of predictions. We consider cognitive functioning including concepts, emotions, drives-instincts, learning, “higher” cognitive functions of language, interaction of language and cognition, role of emotions in this interaction, the beautiful, sublime, and music. Among mechanisms of behavior we concentrate on internal actions in the brain, learning and decision making. A number of predictions are made, some of which have been previously formulated and experimentally confirmed, and a number of new predictions are made that can be experimentally tested. Is it possible to explain a significant part of workings of the mind from a few basic principles, similar to how Newton explained motions of planets? This manuscript summarizes a part of contemporary knowledge toward this goal

    Language and Cognition Interaction Neural Mechanisms

    Get PDF
    How language and cognition interact in thinking? Is language just used for communication of completed thoughts, or is it fundamental for thinking? Existing approaches have not led to a computational theory. We develop a hypothesis that language and cognition are two separate but closely interacting mechanisms. Language accumulates cultural wisdom; cognition develops mental representations modeling surrounding world and adapts cultural knowledge to concrete circumstances of life. Language is acquired from surrounding language “ready-made” and therefore can be acquired early in life. This early acquisition of language in childhood encompasses the entire hierarchy from sounds to words, to phrases, and to highest concepts existing in culture. Cognition is developed from experience. Yet cognition cannot be acquired from experience alone; language is a necessary intermediary, a “teacher.” A mathematical model is developed; it overcomes previous difficulties and leads to a computational theory. This model is consistent with Arbib's “language prewired brain” built on top of mirror neuron system. It models recent neuroimaging data about cognition, remaining unnoticed by other theories. A number of properties of language and cognition are explained, which previously seemed mysterious, including influence of language grammar on cultural evolution, which may explain specifics of English and Arabic cultures

    Modeling of Phenomena and Dynamic Logic of Phenomena

    Get PDF
    Modeling of complex phenomena such as the mind presents tremendous computational complexity challenges. Modeling field theory (MFT) addresses these challenges in a non-traditional way. The main idea behind MFT is to match levels of uncertainty of the model (also, problem or theory) with levels of uncertainty of the evaluation criterion used to identify that model. When a model becomes more certain, then the evaluation criterion is adjusted dynamically to match that change to the model. This process is called the Dynamic Logic of Phenomena (DLP) for model construction and it mimics processes of the mind and natural evolution. This paper provides a formal description of DLP by specifying its syntax, semantics, and reasoning system. We also outline links between DLP and other logical approaches. Computational complexity issues that motivate this work are presented using an example of polynomial models

    Sensor Resource Management: Intelligent Multi-objective Modularized Optimization Methodology and Models

    Get PDF
    The importance of the optimal Sensor Resource Management (SRM) problem is growing. The number of Radar, EO/IR, Overhead Persistent InfraRed (OPIR), and other sensors with best capabilities, is limited in the stressing tasking environment relative to sensing needs. Sensor assets differ significantly in number, location, and capability over time. To determine on which object a sensor should collect measurements during the next observation period k, the known algorithms favor the object with the expected measurements that would result in the largest gain in relative information. We propose a new tasking paradigm OPTIMA for sensors that goes beyond information gain. It includes Sensor Resource Analyzer, and the Sensor Tasking Algorithm (Tasker). The Tasker maintains timing constraints, resolution, and geometric differences between sensors, relative to the tasking requirements on track quality and the measurements of object characterization quality. The Tasker does this using the computational intelligence approach of multi-objective optimization, which involves evolutionary methods

    The efficacy of musical emotions provoked by Mozart's music for the reconciliation of cognitive dissonance.

    Get PDF
    Debates on the origin and function of music have a long history. While some scientists argue that music itself plays no adaptive role in human evolution, others suggest that music clearly has an evolutionary role, and point to music's universality. A recent hypothesis suggested that a fundamental function of music has been to help mitigating cognitive dissonance, which is a discomfort caused by holding conflicting cognitions simultaneously. It usually leads to devaluation of conflicting knowledge. Here we provide experimental confirmation of this hypothesis using a classical paradigm known to create cognitive dissonance. Results of our experiment reveal that the exposure to Mozart's music exerted a strongly positive influence upon the performance of young children and served as basis by which they were enabled to reconcile the cognitive dissonance
    corecore