30 research outputs found

    A dissipative time reversal technique for photo-acoustic tomography in a cavity

    Full text link
    We consider the inverse source problem arising in thermo- and photo-acoustic tomography. It consists in reconstructing the initial pressure from the boundary measurements of the acoustic wave. Our goal is to extend versatile time reversal techniques to the case of perfectly reflecting boundary of the domain. Standard time reversal works only if the solution of the direct problem decays in time, which does not happen in the setup we consider. We thus propose a novel time reversal technique with a non-standard boundary condition. The error induced by this time reversal technique satisfies the wave equation with a dissipative boundary condition and, therefore, decays in time. For larger measurement times, this method yields a close approximation; for smaller times, the first approximation can be iteratively refined, resulting in a convergent Neumann series for the approximation

    Theoretically exact photoacoustic reconstruction from spatially and temporally reduced data

    Full text link
    We investigate the inverse source problem for the wave equation, arising in photo- and thermoacoustic tomography. There exist quite a few theoretically exact inversion formulas explicitly expressing solution of this problem in terms of the measured data, under the assumption of constant and known speed of sound. However, almost all of these formulas require data to be measured either on an unbounded surface, or on a closed surface completely surrounding the object. This is too restrictive for practical applications. The alternative approach we present, under certain restriction on geometry, yields theoretically exact reconstruction of the standard Radon projections of the source from the data measured on a finite open surface. In addition, this technique reduces the time interval where the data should be known. In general, our method requires a pre-computation of densities of certain single-layer potentials. However, in the case of a truncated circular or spherical acquisition surface, these densities are easily obtained analytically, which leads to fully explicit asymptotically fast algorithms. We test these algorithms in a series of numerical simulations

    Microlocally accurate solution of the inverse source problem of thermoacoustic tomography

    Full text link
    We consider the inverse source problem of thermo- and photoacoustic tomography, with data registered on an open surface partially surrounding the source of acoustic waves. Under the assumption of constant speed of sound we develop an explicit non-iterative reconstruction procedure that recovers the Radon transform of the sought source, up to an infinitely smooth additive error term. The source then can be found by inverting the Radon transform. Our analysis is microlocal in nature and does not provide a norm estimate on the error in the so obtained image. However, numerical simulations show that this error is quite small in practical terms. We also present an asymptotically fast implementation of this procedure for the case when the data are given on a circular arc in 2D.Comment: 6 figure

    Fast, high-order solution of surface scattering problems

    Get PDF
    We present a new algorithm for the numerical solution of problems of acoustic scattering by surfaces in three-dimensional space. This algorithm evaluates the scattered field, through fast, high-order solution of the boundary integral equation. The high-order of the solver is achieved through use of partition of unity together with analytical resolution of kernel singularities. The acceleration in turn, results from a novel approach which, based on high-order "two-face" equivalent source approximations, reduces the evaluation of far interactions to evaluation of 3-D FFTs. We demonstrate its performance with a variety of numerical results. In particular, we show that the present algorithm can evaluate accurately in a personal computer, scattering from bodies of acoustical sizes of several hundreds

    A mathematical model and inversion procedure for Magneto-Acousto-Electric Tomography (MAET)

    Full text link
    Magneto-Acousto-Electric Tomography (MAET), also known as the Lorentz force or Hall effect tomography, is a novel hybrid modality designed to be a high-resolution alternative to the unstable Electrical Impedance Tomography. In the present paper we analyze existing mathematical models of this method, and propose a general procedure for solving the inverse problem associated with MAET. It consists in applying to the data one of the algorithms of Thermo-Acoustic tomography, followed by solving the Neumann problem for the Laplace equation and the Poisson equation. For the particular case when the region of interest is a cube, we present an explicit series solution resulting in a fast reconstruction algorithm. As we show, both analytically and numerically, MAET is a stable technique yilelding high-resolution images even in the presence of significant noise in the data
    corecore