4,081 research outputs found

    Realistic interpretation of a superposition state does not imply a mixture

    Full text link
    Contrary to previous claims, it is shown that, for an ensemble of either single-particle systems or multi-particle systems, the realistic interpretation of a superposition state that mathematically describes the ensemble does not imply that the ensemble is a mixture. Therefore it cannot be argued that the realistic interpretation is wrong on the basis that some predictions derived from the mixture are different from the corresponding predictions derived from the superposition state

    Extending Feynman's Formalisms for Modelling Human Joint Action Coordination

    Full text link
    The recently developed Life-Space-Foam approach to goal-directed human action deals with individual actor dynamics. This paper applies the model to characterize the dynamics of co-action by two or more actors. This dynamics is modelled by: (i) a two-term joint action (including cognitive/motivatonal potential and kinetic energy), and (ii) its associated adaptive path integral, representing an infinite--dimensional neural network. Its feedback adaptation loop has been derived from Bernstein's concepts of sensory corrections loop in human motor control and Brooks' subsumption architectures in robotics. Potential applications of the proposed model in human--robot interaction research are discussed. Keywords: Psycho--physics, human joint action, path integralsComment: 6 pages, Late

    A Unified Quantum NOT Gate

    Full text link
    We study the feasibility of implementing a quantum NOT gate (approximate) when the quantum state lies between two latitudes on the Bloch's sphere and present an analytical formula for the optimized 1-to-MM quantum NOT gate. Our result generalizes previous results concerning quantum NOT gate for a quantum state distributed uniformly on the whole Bloch sphere as well as the phase covariant quantum state. We have also shown that such 1-to-MM optimized NOT gate can be implemented using a sequential generation scheme via matrix product states (MPS)

    Design and fabrication of 3D-printed anatomically shaped lumbar cage for intervertebra disc (IVD) degeneration treatment

    Get PDF
    Spinal fusion is the gold standard surgical procedure for degenerative spinal conditions when conservative therapies have been unsuccessful in rehabilitation of patients. Novel strategies are required to improve biocompatibility and osseointegration of traditionally used materials for lumbar cages. Furthermore, new design and technologies are needed to bridge the gap due to the shortage of optimal implant sizes to fill the intervertebral disc defect. Within this context, additive manufacturing technology presents an excellent opportunity to fabricate ergonomic shape medical implants. The goal of this study is to design and manufacture a 3D-printed lumbar cage for lumbar interbody fusion. Optimisations of the proposed implant design and its printing parameters were achieved via in silico analysis. The final construct was characterised via scanning electron microscopy, contact angle, x-ray micro computed tomography (μCT), atomic force microscopy, and compressive test. Preliminary in vitro cell culture tests such as morphological assessment and metabolic activities were performed to access biocompatibility of 3D-printed constructs. Results of in silico analysis provided a useful platform to test preliminary cage design and to find an optimal value of filling density for 3D printing process. Surface characterisation confirmed a uniform coating of nHAp with nanoscale topography. Mechanical evaluation showed mechanical properties of final cage design similar to that of trabecular bone. Preliminary cell culture results showed promising results in terms of cell growth and activity confirming biocompatibility of constructs. Thus for the first time, design optimisation based on computational and experimental analysis combined with the 3D-printing technique for intervertebral fusion cage has been reported in a single study. 3D-printing is a promising technique for medical applications and this study paves the way for future development of customised implants in spinal surgical applications

    An experimental observation of geometric phases for mixed states using NMR interferometry

    Get PDF
    Examples of geometric phases abound in many areas of physics. They offer both fundamental insights into many physical phenomena and lead to interesting practical implementations. One of them, as indicated recently, might be an inherently fault-tolerant quantum computation. This, however, requires to deal with geometric phases in the presence of noise and interactions between different physical subsystems. Despite the wealth of literature on the subject of geometric phases very little is known about this very important case. Here we report the first experimental study of geometric phases for mixed quantum states. We show how different they are from the well understood, noiseless, pure-state case.Comment: 4 pages, 3 figure

    Capabilities of infrared weld monitor

    Get PDF
    A non-obtrusive pre-aligned, solid-state device has been developed to monitor the primary infrared emissions during laser welding. The weld monitor output is a 100-1000 mV signal that depends on the beam power and weld characteristics. The DC level of this signal is related to weld penetration, while AC portions of the output can be correlated with surface irregularities and part misalignment or contamination. Changes in DC behavior are also noted for both full and deep penetration welds. Full penetration welds are signified by an abrupt reduction in the weld monitor output. Bead on plate welds were made on steel, aluminum, and magnesium with both a CW CO{sub 2} laser and a pulsed Nd:YAG laser to explore the relationships between the weld characteristics and the weld monitor output

    Braneworld Tensor Anisotropies in the CMB

    Get PDF
    Cosmic microwave background (CMB) observations provide in principle a high-precision test of models which are motivated by M theory. We set out the framework of a program to compute the tensor anisotropies in the CMB that are generated in braneworld models. In the simplest approximation, we show the braneworld imprint as a correction to the power spectra for standard temperature and polarization anisotropies.Comment: Minor corrections and references added. Accepted for publication in Phys. Rev.

    Total Neoadjuvant Therapy in Locally Advanced Rectal Cancer: A Systematic Review and Metaanalysis of Oncological and Operative Outcomes

    Get PDF
    Background: Total neoadjuvant therapy in rectal cancer refers to the administration of chemoradiotherapy plus chemotherapy before surgery. Recent studies have shown improved pathological complete response and disease-free survival with this approach. However, survival benefits remain unproven. Our objective is to present a metaanalysis of oncological outcomes of total neoadjuvant therapy in locally advanced rectal cancer. Patients and methods: A comprehensive search was performed on PubMed, Medline, and Google Scholars. Studies comparing total neoadjuvant therapy with standard neoadjuvant chemoradiotherapy were included. Data extracted from the individual studies were pooled and a metaanalysis performed. The outcomes of interest are the rate of complete pathological response, nodal response, resection margin, anal preservation, anastomotic leak, local recurrence, distant recurrence, disease-free survival, and overall survival. Results: There were 15 comparative studies with 2437 patients in the neoadjuvant chemoradiotherapy group and 2284 in the total neoadjuvant therapy group. The pooled complete pathological response was 22.3% in the total neoadjuvant therapy group, compared with 14.2% in the standard neoadjuvant chemoradiotherapy group (p < 0.001). Even though there was no difference in local recurrence rate, there was a significantly lower rate of distant recurrence (OR 0.81, p = 0.02), and better 3-year disease-free survival (70.6% vs. 65.3%, respectively, p < 0.001) and overall survival (84.9% vs. 82.3%, respectively, p = 0.006), favoring the total neoadjuvant therapy group. Due to significant heterogeneity in the study protocols, there remains uncertainty on the ideal chemotherapy/radiotherapy sequence. Conclusions: This study provides supporting evidence on the favorable immediate and intermediate oncological outcomes with the use of total neoadjuvant therapy for locally advanced rectal cancer
    corecore