2,368 research outputs found

    Consistency equations in Randall-Sundrum cosmology: a test for braneworld inflation

    Full text link
    In the context of an inflationary Randall-Sundrum Type II braneworld (RS2) we calculate spectral indices and amplitudes of cosmological scalar and tensor perturbations, up to second order in slow-roll parameters. Under very simple assumptions, extrapolating next-order formulae from first-order calculations in the case of a de Sitter brane, we see that the degeneracy between standard and braneworld lowest-order consistency equations is broken, thus giving different signatures of early-universe inflationary expansion. Using the latest results from WMAP for estimates of cosmological observables, it is shown that future data and missions can in principle discriminate between standard and braneworld scenarios.Comment: 13 pages; v3: supersedes the published version, corrected misprint

    Simple Frameshifts in MIS Postoperative Pain Management Significantly Reduce Opiate Prescriptions

    Get PDF
    Aims for Improvement The intervention aimed to reduce narcotics provided to patients after MIS by reducing number of narcotic prescriptions and amount prescribed by 25% without affecting patientreported pain scores Usage measured in Morphine Equivalent Doses (MED) MED and pain score assessed at 3 time points: post-op day 1 (POD1), discharge (D/C) and follow-up (FU) apt Pre- and Post-intervention cohorts - Month 1 (Pre-intervention): 21 patients and Month 2 (Post-intervention): 30 patient

    Compactness Determines the Success of Cube and Octahedron Self-Assembly

    Get PDF
    Nature utilizes self-assembly to fabricate structures on length scales ranging from the atomic to the macro scale. Self-assembly has emerged as a paradigm in engineering that enables the highly parallel fabrication of complex, and often three-dimensional, structures from basic building blocks. Although there have been several demonstrations of this self-assembly fabrication process, rules that govern a priori design, yield and defect tolerance remain unknown. In this paper, we have designed the first model experimental system for systematically analyzing the influence of geometry on the self-assembly of 200 and 500 µm cubes and octahedra from tethered, multi-component, two-dimensional (2D) nets. We examined the self-assembly of all eleven 2D nets that can fold into cubes and octahedra, and we observed striking correlations between the compactness of the nets and the success of the assembly. Two measures of compactness were used for the nets: the number of vertex or topological connections and the radius of gyration. The success of the self-assembly process was determined by measuring the yield and classifying the defects. Our observation of increased self-assembly success with decreased radius of gyration and increased topological connectivity resembles theoretical models that describe the role of compactness in protein folding. Because of the differences in size and scale between our system and the protein folding system, we postulate that this hypothesis may be more universal to self-assembling systems in general. Apart from being intellectually intriguing, the findings could enable the assembly of more complicated polyhedral structures (e.g. dodecahedra) by allowing a priori selection of a net that might self-assemble with high yields

    Radiation-hypersensitive cancer patients do not manifest protein expression abnormalities in components of the nonhomologous end-joining (NHEJ) pathway

    Get PDF
    Radiation therapy (RT) is utilised for the treatment of around half of all oncology patients during the course of their illness. Despite great clinical progress in the rational deployment of RT, the underlying molecular basis for its efficacy and toxicity are currently imperfectly understood. In this study, we took a biochemical approach to evaluate the potential role of key ionising radiation repair proteins in the treatment outcomes of patients with severe acute or late RT side effects. Lymphoblastoid cell lines were established from blood samples from 36 radiosensitive cases and a number of controls (the latter had had RT but did not develop significant toxicity). The expression level and migration of key proteins from the nonhomologous end-joining (NHEJ) pathway was evaluated by Western blot analysis on cases and controls. We did not observe any abnormalities in expression level or migration pattern of the following NHEJ proteins in radiosensitive cancer cases: Ku70, Ku80, XRCC4, DNA Ligase IV. These important negative results provide evidence that mutations that affect protein expression of these NHEJ components are unlikely to underlie clinical radiation sensitivity

    Graft-vs-tumor effect in patients with advanced nasopharyngeal cancer treated with nonmyeloablative allogeneic PBSC transplantation

    Get PDF
    While nonmyeloablative peripheral blood stem cell transplantation (NST) has shown efficacy against several solid tumors, it is untested in nasopharyngeal cancer (NPC). In a phase II clinical trial, 21 patients with pretreated metastatic NPC underwent NST with sibling PBSC allografts, using CY conditioning, thymic irradiation and in vivo T-cell depletion with thymoglobulin. Stable lymphohematopoietic chimerism was achieved in most patients and prophylactic CYA was tapered at a median of day +30. Seven patients (33%) showed partial response and three (14%) achieved stable disease. Four patients were alive at 2 years and three showed prolonged disease control of 344, 525 and 550 days. With a median follow-up of 209 (4–1147) days, the median PFS was 100 days (95% confidence interval (CI), 66–128 days), and median OS was 209 days (95% CI, 128–236 days). Patients with chronic GVHD had better survival—median OS 426 days (95% CI, 194–NE days) vs 143 days (95% CI, 114–226 days) (P=0.010). Thus, NST may induce meaningful clinical responses in patients with advanced NPC

    Brane World Effective Action at Low Energies and AdS/CFT Correspondence

    Get PDF
    A low energy iteration scheme to study nonlinear gravity in the brane world is developed. As a result, we obtain the brane world effective action at low energies. The relation between the geometrical approach and the approach using the AdS/CFT correspondence is also clarified. In particular, we find generalized dark radiation as homogeneous solutions in our iteration scheme. Moreover, the precise correspondence between the bulk geometry and the brane effective action is established, which gives a holographic view of the brane world.Comment: Revtex4, 12 pages, references added. Version accepted for publicaton in Phys. Rev.

    MCL-CAw: A refinement of MCL for detecting yeast complexes from weighted PPI networks by incorporating core-attachment structure

    Get PDF
    Abstract Background The reconstruction of protein complexes from the physical interactome of organisms serves as a building block towards understanding the higher level organization of the cell. Over the past few years, several independent high-throughput experiments have helped to catalogue enormous amount of physical protein interaction data from organisms such as yeast. However, these individual datasets show lack of correlation with each other and also contain substantial number of false positives (noise). Over these years, several affinity scoring schemes have also been devised to improve the qualities of these datasets. Therefore, the challenge now is to detect meaningful as well as novel complexes from protein interaction (PPI) networks derived by combining datasets from multiple sources and by making use of these affinity scoring schemes. In the attempt towards tackling this challenge, the Markov Clustering algorithm (MCL) has proved to be a popular and reasonably successful method, mainly due to its scalability, robustness, and ability to work on scored (weighted) networks. However, MCL produces many noisy clusters, which either do not match known complexes or have additional proteins that reduce the accuracies of correctly predicted complexes. Results Inspired by recent experimental observations by Gavin and colleagues on the modularity structure in yeast complexes and the distinctive properties of "core" and "attachment" proteins, we develop a core-attachment based refinement method coupled to MCL for reconstruction of yeast complexes from scored (weighted) PPI networks. We combine physical interactions from two recent "pull-down" experiments to generate an unscored PPI network. We then score this network using available affinity scoring schemes to generate multiple scored PPI networks. The evaluation of our method (called MCL-CAw) on these networks shows that: (i) MCL-CAw derives larger number of yeast complexes and with better accuracies than MCL, particularly in the presence of natural noise; (ii) Affinity scoring can effectively reduce the impact of noise on MCL-CAw and thereby improve the quality (precision and recall) of its predicted complexes; (iii) MCL-CAw responds well to most available scoring schemes. We discuss several instances where MCL-CAw was successful in deriving meaningful complexes, and where it missed a few proteins or whole complexes due to affinity scoring of the networks. We compare MCL-CAw with several recent complex detection algorithms on unscored and scored networks, and assess the relative performance of the algorithms on these networks. Further, we study the impact of augmenting physical datasets with computationally inferred interactions for complex detection. Finally, we analyse the essentiality of proteins within predicted complexes to understand a possible correlation between protein essentiality and their ability to form complexes. Conclusions We demonstrate that core-attachment based refinement in MCL-CAw improves the predictions of MCL on yeast PPI networks. We show that affinity scoring improves the performance of MCL-CAw.http://deepblue.lib.umich.edu/bitstream/2027.42/78256/1/1471-2105-11-504.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78256/2/1471-2105-11-504-S1.PDFhttp://deepblue.lib.umich.edu/bitstream/2027.42/78256/3/1471-2105-11-504-S2.ZIPhttp://deepblue.lib.umich.edu/bitstream/2027.42/78256/4/1471-2105-11-504.pdfPeer Reviewe
    corecore