3,820 research outputs found

    The Durham Statement Two Years Later: Open Access in the Law School Journal Environment

    Get PDF
    The Durham Statement on Open Access to Legal Scholarship, drafted by a group of academic law library directors, was promulgated in February 2009. It calls for two things: (1) open access publication of law school–published journals; and (2) an end to print publication of law journals, coupled with a commitment to keeping the electronic versions available in “stable, open, digital formats.” The two years since the Statement was issued have seen increased publication of law journals in openly available electronic formats, but little movement toward all-electronic publication. This article discusses the issues raised by the Durham Statement, the current state of law journal publishing, and directions forward

    14 challenges for conducting social neuroscience and longitudinal EEG research with infants

    Get PDF
    The use of electroencephalography (EEG) to study infant brain development is a growing trend. In addition to classical longitudinal designs that study the development of the neural, cognitive and behavioural function, new areas of EEG application are emerging, such as novel social neuroscience paradigms using dual infant-adult EEG recordings. However, most of the experimental designs, analysis methods, as well as EEG hardware were originally developed for single-person adult research. When applied to the study of infant development, adult-based solutions often pose unique problems that may go unrecognised. Here, we identify 14 challenges that infant EEG researchers may encounter when designing new experiments, collecting data, and conducting data analysis. Challenges related to the experimental design are: (1) small sample size and data attrition, and (2) varying arousal in younger infants. Challenges related to data acquisition are: (3) determining the optimal location for reference and ground electrodes, (4) control of impedance when testing with the high-density sponge electrode nets, (5) poor fit of standard EEG caps to the varying infant head shapes, and (6) ensuring a high degree of temporal synchronisation between amplifiers and recording devices during dual-EEG acquisition. Challenges related to the analysis of longitudinal and social neuroscience datasets are: (7) developmental changes in head anatomy, (8) prevalence and diversity of infant myogenic artefacts, (9) a lack of stereotypical topography of eye movements needed for the ICA-based data cleaning, (10) and relatively high inter-individual variability of EEG responses in younger cohorts. Additional challenges for the analysis of dual EEG data are: (11) developmental shifts in canonical EEG rhythms and difficulties in differentiating true inter-personal synchrony from spurious synchrony due to (12) common intrinsic properties of the signal and (13) shared external perturbation. Finally, (14) there is a lack of test-retest reliability studies of infant EEG. We describe each of these challenges and suggest possible solutions. While we focus specifically on the social neuroscience and longitudinal research, many of the issues we raise are relevant for all fields of infant EEG research

    Floquet stroboscopic divisibility in non-Markovian dynamics

    Full text link
    We provide a general discussion of the Liouvillian spectrum for a system coupled to a non-Markovian bath using Floquet theory. This approach is suitable when the system is described by a time-convolutionless master equation with time-periodic rates. Surprisingly, the periodic nature of rates allow us to have a stroboscopic divisible dynamical map at discrete times, which we refer to as Floquet stroboscopic divisibility. We illustrate the general theory for a Schr\"odinger cat which is roaming inside a non-Markovian bath, and demonstrate the appearance of stroboscopic revival of the cat at later time after its death. Our theory may have profound implications in entropy production in non-equilibrium systems.Comment: We changed the title and explained in more detail the definition of non-Markovian dynamics used in the manuscrip

    Effects of Applied Loads, Effective Contact Area and Surface Roughness on the Dicing Yield of 3D Cu Bonded Interconnects

    Get PDF
    Bonded copper interconnects were created using thermo-compression bonding and the dicing yield was used as an indication of the bond quality. SEM images indicated that the Cu was plastically deformed. Our experimental and modeling results indicate that the effective contact area is directly proportional to the applied load. Furthermore, for first time, results have been obtained that indicate that the dicing yield is proportional to the measured bond strength, and the bond strength is proportional to the effective contact area. It is also shown that films with rougher surfaces (and corresponding lower effective bonding areas) have lower bond strengths and dicing yields. A quantitative model for the relationship between measured surface roughness and the corresponding dicing yield has been developed. An appropriate surface-roughness data acquisition methodology has also been developed. The maximum possible applied load and the minimum possible surface roughness are required to obtain the maximum effective contact area, and hence to achieve optimum yields (both mechanically and electrically).Singapore-MIT Alliance (SMA

    Sand production: A smart control framework for risk mitigation

    Get PDF
    Due to the current global oil price, the sand production is considered undesirable product and the control of sand production is considered as one of the main concerns of production engineers. It can damage downhole, subsea equipments and surface production facilities, also increasing the risk of catastrophic failure. As a result of that it costs the producers multiple millions of dollars each year. Therefore, there are many different approaches of sand control designed for different reservoir conditions. Selecting an appropriate technique for preventing formation sand production depends on different reservoir parameters. Therefore, choosing the best sand control method is the result of systematic study. In this paper the sand production factors and their effects are presented where the emphasis is given towards the sand prediction to determine the probability of producing sand from the reservoir, followed by the correct prevention implementation of sand control method. The combination of these two is presented as a smart control framework that can be applied for sand production management

    Extending Feynman's Formalisms for Modelling Human Joint Action Coordination

    Full text link
    The recently developed Life-Space-Foam approach to goal-directed human action deals with individual actor dynamics. This paper applies the model to characterize the dynamics of co-action by two or more actors. This dynamics is modelled by: (i) a two-term joint action (including cognitive/motivatonal potential and kinetic energy), and (ii) its associated adaptive path integral, representing an infinite--dimensional neural network. Its feedback adaptation loop has been derived from Bernstein's concepts of sensory corrections loop in human motor control and Brooks' subsumption architectures in robotics. Potential applications of the proposed model in human--robot interaction research are discussed. Keywords: Psycho--physics, human joint action, path integralsComment: 6 pages, Late

    Toward the Understanding of Topographical and Spectral Signatures of Infant Movement Artifacts in Naturalistic EEG

    Get PDF
    Electroencephalography (EEG) is perhaps the most widely used brain-imaging technique for pediatric populations. However, EEG signals are prone to distortion by motion. Compared to adults, infants’ motion is both more frequent and less stereotypical yet motion effects on the infant EEG signal are largely undocumented. Here, we present a systematic assessment of naturalistic motion effects on the infant EEG signal. EEG recordings were performed with 14 infants (12 analyzed) who passively watched movies whilst spontaneously producing periods of bodily movement and rest. Each infant produced an average of 38.3 s (SD = 14.7 s) of rest and 18.8 s (SD = 17.9 s) of single motion segments for the final analysis. Five types of infant motions were analyzed: Jaw movements, and Limb movements of the Hand, Arm, Foot, and Leg. Significant movement-related distortions of the EEG signal were detected using cluster-based permutation analysis. This analysis revealed that, relative to resting state, infants’ Jaw and Arm movements produced significant increases in beta (∼15 Hz) power, particularly over peripheral sites. Jaw movements produced more anteriorly located effects than Arm movements, which were most pronounced over posterior parietal and occipital sites. The cluster analysis also revealed trends toward decreased power in the theta and alpha bands observed over central topographies for all motion types. However, given the very limited quantity of infant data in this study, caution is recommended in interpreting these findings before subsequent replications are conducted. Nonetheless, this work is an important first step to inform future development of methods for addressing EEG motion-related artifacts. This work also supports wider use of naturalistic paradigms in social and developmental neuroscience

    Interpersonal Neural Entrainment during Early Social Interaction

    Get PDF
    Currently, we understand much about how children’s brains attend to and learn from information presented while they are alone, viewing a screen – but less about how interpersonal social influences are substantiated in the brain. Here, we consider research that examines how social behaviors affect not one, but both partners in a dyad. We review studies that measured interpersonal neural entrainment during early social interaction, considering two ways of measuring entrainment: concurrent entrainment (e.g., ‘when A is high, B is high’ – also known as synchrony) and sequential entrainment (‘changes in A forward-predict changes in B’). We discuss possible causes of interpersonal neural entrainment, and consider whether it is merely an epiphenomenon, or whether it plays an independent, mechanistic role in early attention and learning
    corecore