7 research outputs found

    Distinct EMT programs control normal mammary stem cells and tumour-initiating cells

    Get PDF
    Tumour-initiating cells (TICs) are responsible for metastatic dissemination and clinical relapse in a variety of cancers. Analogies between TICs and normal tissue stem cells have led to the proposal that activation of the normal stem-cell program within a tissue serves as the major mechanism for generating TICs. Supporting this notion, we and others previously established that the Slug epithelial-to-mesenchymal transition-inducing transcription factor (EMT-TF), a member of the Snail family, serves as a master regulator of the gland-reconstituting activity of normal mammary stem cells, and that forced expression of Slug in collaboration with Sox9 in breast cancer cells can efficiently induce entrance into the TIC state. However, these earlier studies focused on xenograft models with cultured cell lines and involved ectopic expression of EMT-TFs, often at non-physiological levels. Using genetically engineered knock-in reporter mouse lines, here we show that normal gland-reconstituting mammary stem cells residing in the basal layer of the mammary epithelium and breast TICs originating in the luminal layer exploit the paralogous EMT-TFs Slug and Snail, respectively, which induce distinct EMT programs. Broadly, our findings suggest that the seemingly similar stem-cell programs operating in TICs and normal stem cells of the corresponding normal tissue are likely to differ significantly in their details.Breast Cancer Research FoundationSamuel Waxman Cancer Research FoundationLudwig Center for Molecular Oncology at MITNational Cancer Institute (U.S.).(Program P01-CA080111)National Cancer Institute (U.S.).(Program R01-CA078461)National Cancer Institute (U.S.).(Program U01-CA184897

    A breast cancer stem cell niche supported by juxtacrine signalling from monocytes and macrophages

    Get PDF
    The cell-biological program termed the epithelial-mesenchymal transition (EMT) confers on cancer cells mesenchymal traits and an ability to enter the cancer stem cell (CSC) state. However, the interactions between CSCs and their surrounding microenvironment are poorly understood. Here we show that tumour-associated monocytes and macrophages (TAMs) create a CSC niche through juxtacrine signalling with CSCs. We performed quantitative proteomic profiling and found that the EMT program upregulates the expression of CD90, also known as Thy1, and EphA4, which mediate the physical interactions of CSCs with TAMs by directly binding with their respective counter-receptors on these cells. In response, the EphA4 receptor on the carcinoma cells activates Src and NF-κ B. In turn, NF-κ B in the CSCs induces the secretion of a variety of cytokines that serve to sustain the stem cell state. Indeed, admixed macrophages enhance the CSC activities of carcinoma cells. These findings underscore the significance of TAMs as important components of the CSC niche.National Institutes of Health (U.S.) (Grant R01-CA078461)National Institutes of Health (U.S.) (Grant P01-CA080111)National Institutes of Health (U.S.) (Grant U54-CA163109

    Chimeric Ad5.F35 vector evades anti-adenovirus serotype 5 neutralization opposing GUCY2C-targeted antitumor immunity

    Get PDF
    BACKGROUND: Adenovirus serotype 5 (Ad5) is a commonly used viral vector for transient delivery of transgenes, primarily for vaccination against pathogen and tumor antigens. However, endemic infections with Ad5 produce virus-specific neutralizing antibodies (NAbs) that limit transgene delivery and constrain target-directed immunity following exposure to Ad5-based vaccines. Indeed, clinical trials have revealed the limitations that virus-specific NAbs impose on the efficacy of Ad5-based vaccines. In that context, the emerging focus on immunological approaches targeting cancer self-antigens or neoepitopes underscores the unmet therapeutic need for more efficacious vaccine vectors. METHODS: Here, we evaluated the ability of a chimeric adenoviral vector (Ad5.F35) derived from the capsid of Ad5 and fiber of the rare adenovirus serotype 35 (Ad35) to induce immune responses to the tumor-associated antigen guanylyl cyclase C (GUCY2C). RESULTS: In the absence of pre-existing immunity to Ad5, GUCY2C-specific T-cell responses and antitumor efficacy induced by Ad5.F35 were comparable to Ad5 in a mouse model of metastatic colorectal cancer. Furthermore, like Ad5, Ad5.F35 vector expressing GUCY2C was safe and produced no toxicity in tissues with, or without, GUCY2C expression. Importantly, this chimeric vector resisted neutralization in Ad5-immunized mice and by sera collected from patients with colorectal cancer naturally exposed to Ad5. CONCLUSIONS: These data suggest that Ad5.F35-based vaccines targeting GUCY2C, or other tumor or pathogen antigens, may produce clinically relevant immune responses in more (≥90%) patients compared with Ad5-based vaccines (~50%)

    Investigation of healthcare-associated SARS-CoV-2 infection: Learning outcomes from an investigative process in the initial phase of the pandemic.

    No full text
    BACKGROUND: Healthcare-associated (HCA) SARS-CoV-2 infection is a significant contributor to the spread of the 2020 pandemic. Timely review of HCA cases is essential to identify learning to inform infection prevention and control (IPC) policies and organisational response. AIM: To identify key areas for improvement through rapid investigation of HCA SARS-CoV-2 cases and to implement change. METHODS: Cases were identified based on date of first positive SARS-CoV-2 PCR sample in relation to date of hospital admission. Cases were reviewed using a structured gap analysis tool to identify key learning points. These were discussed in weekly multidisciplinary meetings to gain consensus on learning outcomes, level of harm incurred by the patient and required actions. Learning was then promptly fed back to individual teams and the organisation. FINDINGS: Of the 489 SARS-CoV-2 cases admitted between 10th March and 23rd June 2020, 114 suspected HCA cases (23.3%) were reviewed; 58/489 (11.8%) were ultimately deemed to be HCA. Five themes were identified: individual patient vulnerability, communication, IPC implementation, policy issues and organisational response. Adaptations to policies based on these reviews were completed within the course of the initial phase of the pandemic. CONCLUSION: This approach enabled timely learning and implementation of control measures and policy development

    Applying prospective genomic surveillance to support investigation of hospital-onset COVID-19

    No full text
    Here, we provide an update on our previous Article,1 which described the use of rapid SARS-CoV-2 genome sequencing to investigate hospital-acquired infections (HAIs) at Cambridge University Hospitals NHS Foundation Trust (CUH), Cambridge, UK. CUH experienced a substantial second wave of COVID-19 (figure). Between Nov 2, 2020, and Feb 7, 2021, 162 (14%) of 1178 patients with COVID-19 at CUH had a suspected or definite HAI (as previously defined1), and 465 infected health-care workers (HCWs) were identified via the staff screening programme.2 Nanopore sequencing was attempted for 513 (44%) of 1178 patients, prioritising those with hospital-onset infections, and 324 (70%) of 465 HCWs; 252 (21%) of 1178 patients and 317 (68%) of 465 HCWs had SARS-CoV-2 genomes available after quality control filtering (as previously described1). Patient coverage was lower than in our previous study1 and for HCWs, reflecting different diagnostic testing methods and limitations on sequencing capacity. The frequency of the B.1.1.7 PANGO-lineage3 increased from 8% (nine of 109) in November, 2020, to 83% (257 of 311) in January, 2021

    Large-scale genotyping identifies 41 new loci associated with breast cancer risk

    No full text
    Breast cancer is the most common cancer among women. Common variants at 27 loci have been identified as associated with susceptibility to breast cancer, and these account for ~9% of the familial risk of the disease. We report here a meta-analysis of 9 genome-wide association studies, including 10,052 breast cancer cases and 12,575 controls of European ancestry, from which we selected 29,807 SNPs for further genotyping. These SNPs were genotyped in 45,290 cases and 41,880 controls of European ancestry from 41 studies in the Breast Cancer Association Consortium (BCAC). The SNPs were genotyped as part of a collaborative genotyping experiment involving four consortia (Collaborative Oncological Gene-environment Study, COGS) and used a custom Illumina iSelect genotyping array, iCOGS, comprising more than 200,000 SNPs. We identified SNPs at 41 new breast cancer susceptibility loci at genome-wide significance (P < 5 × 10−8). Further analyses suggest that more than 1,000 additional loci are involved in breast cancer susceptibility
    corecore