92 research outputs found
Influence of the Thermophysical Model on the CFD Analysis of Oil-Cooled Transformer Windings
A disc-type winding of an oil-immersed power transformer is modeled with Computational Fluid Dynamics. Different approaches are implemented to evaluate the feasibility of the Boussinesq approximation: (i) constant fluid properties, (ii) variable viscosity and thermal diffusivity and (iii) temperature-dependent fluid properties. Temperature and flow distributions are reconstructed and put into relation with physical phenomena and model assumptions. Their comparison suggests that numerical results are fairly sensitive to the thermophysical model as long as the buoyancy force is a relevant component of the flow. Nonetheless, all the cases converge to very close predictions of the hot-spot value and location, with possibly positive implications for the use of reference parameters when deriving flow and heat transfer correlations for this topic
Continuum limit of amorphous elastic bodies (III): Three dimensional systems
Extending recent numerical studies on two dimensional amorphous bodies, we
characterize the approach of elastic continuum limit in three dimensional
(weakly polydisperse) Lennard-Jones systems. While performing a systematic
finite-size analysis (for two different quench protocols) we investigate the
non-affine displacement field under external strain, the linear response to an
external delta force and the low-frequency harmonic eigenmodes and their
density distribution. Qualitatively similar behavior is found as in two
dimensions. We demonstrate that the classical elasticity description breaks
down below an intermediate length scale , which in our system is
approximately 23 molecular sizes. This length characterizes the correlations of
the non-affine displacement field, the self-averaging of external noise with
distance from the source and gives the lower wave length bound for the
applicability of the classical eigenfrequency calculations. We trace back the
"Boson-peak" of the density of eigenfrequencies (obtained from the velocity
auto-correlation function) to the inhomogeneities on wave lengths smaller than
.Comment: 27 pages, 11 figures, submitted to Phys. Rev.
Dressed emitters as impurities
Dressed states forming when quantum emitters or atoms couple to a photonic bath underpin a number of phenomena and applications, in particular nonradiating effective interactions occurring within photonic bandgaps. Here, we present a compact formulation of the resolvent-based theory for calculating atom-photon dressed states built on the idea that the atom behaves as an effective impurity. This establishes an explicit connection with the standard impurity problem in condensed matter. Moreover, it allows us to formulate and settle - independently of the bath Hamiltonian - a number of properties previously known only for specific models or not entirely formalized. The framework is next extended to the case of more than one emitter, which is used to derive a general expression of dissipationless effective Hamiltonians explicitly featuring the overlap of single-emitter dressed bound states
Plastic Response of a 2D Lennard-Jones amorphous solid: Detailed analysis of the local rearrangements at very slow strain-rate
We analyze in details the atomistic response of a model amorphous material
submitted to plastic shear in the athermal, quasistatic limit. After a linear
stress-strain behavior, the system undergoes a noisy plastic flow. We show that
the plastic flow is spatially heterogeneous. Two kinds of plastic events occur
in the system: quadrupolar localized rearrangements, and shear bands. The
analysis of the individual motion of a particle shows also two regimes: a
hyper-diffusive regime followed by a diffusive regime, even at zero
temperature
A priori and a posteriori analysis of the flow around a rectangular cylinder
The definition of a correct mesh resolution and modelling approach for the Large Eddy Simulation (LES) of the flow around a rectangular cylinder is recognized to be a rather elusive problem as shown by the large scatter of LES results present in the literature. In the present work, we aim at assessing this issue by performing an a priori analysis of Direct Numerical Simulation (DNS) data of the flow. This approach allows us to measure the ability of the LES field on reproducing the main flow features as a function of the resolution employed. Based on these results, we define a mesh resolution which maximize the opposite needs of reducing the computational costs and of adequately resolving the flow dynamics. The effectiveness of the resolution method proposed is then verified by means of an a posteriori analysis of actual LES data obtained by means of the implicit LES approach given by the numerical properties of the Discontinuous Galerkin spatial discretization technique. The present work represents a first step towards a best practice for LES of separating and reattaching flows
Experimental and numerical analysis of a liquid aluminium injector for an Al-H2O based hydrogen production system
This paper investigates pressurised injection system for liquid aluminium for a cogeneration system based on the Al–H2O reaction. The reaction produces hydrogen and heat which is used for super-heating vapour for a steam cycle. The aluminium combustion with water generates also alumina as a byproduct; the aluminium oxide can be recycled and transformed back to aluminium. Thus, aluminium can be exploited as energy carrier in order to transport energy from the alumina recycling plant to the place where the cogeneration system is located. The water is also used in a closed loop; indeed, the amount of water produced employing the hydrogen obtained by the proposed system corresponds to the oxidizing water for the Al/H2O reaction. The development of a specific test rig designed for investigating the liquid aluminium injection is presented in this research study. The injector nozzle is investigated by means of numerical thermal and structural analysis. The calculations are compared and validated against the experimental measurements carried out on ad-hoc developed test rig. A good agreement between the numerical results and the experimental values is found and the new design of the nozzle is devised
Microscopic elasticity of complex systems
Lecture Notes for the Erice Summer School 2005 Computer Simulations in
Condensed Matter: from Materials to Chemical Biology. Perspectives in
celebration of the 65th Birthday of Mike Klein organized by Kurt Binder,
Giovanni Ciccotti and Mauro Ferrari
Stress response inside perturbed particle assemblies
The effect of structural disorder on the stress response inside three
dimensional particle assemblies is studied using computer simulations of
frictionless sphere packings. Upon applying a localised, perturbative force
within the packings, the resulting {\it Green's} function response is mapped
inside the different assemblies, thus providing an explicit view as to how the
imposed perturbation is transmitted through the packing. In weakly disordered
arrays, the resulting transmission of forces is of the double-peak variety, but
with peak widths scaling linearly with distance from the source of the
perturbation. This behaviour is consistent with an anisotropic elasticity
response profile. Increasing the disorder distorts the response function until
a single-peak response is obtained for fully disordered packings consistent
with an isotropic description.Comment: 8 pages, 7 figure captions To appear in Granular Matte
- …