9 research outputs found

    High-Altitude Precision Landing by Smartphone Video Guidance Sensor and Sensor Fusion

    No full text
    This paper describes the deployment, integration, and demonstration of the Smartphone Video Guidance Sensor (SVGS) as novel technology for autonomous 6-DOF proximity maneuvers and high-altitude precision landing of UAVs via sensor fusion. The proposed approach uses a vision-based photogrammetric position and attitude sensor (SVGS) to support the precise automated landing of a UAV from an initial altitude above 100 m to ground, guided by an array of landing beacons. SVGS information is fused with other on-board sensors at the flight control unit to estimate the UAV’s position and attitude during landing relative to a ground coordinate system defined by the landing beacons. While the SVGS can provide mm-level absolute positioning accuracy depending on range and beacon dimensions, the proper operation of the SVGS requires a line of sight between the camera and the beacon, and readings can be disturbed by environmental lighting conditions and reflections. SVGS readings can therefore be intermittent, and their update rate is not deterministic since the SVGS runs on an Android device. The sensor fusion of the SVGS with on-board sensors enables an accurate and reliable update of the position and attitude estimates during landing, providing improved performance compared to state-of-art automated landing technology based on an infrared beacon, but its implementation must address the challenges mentioned above. The proposed technique also shows significant advantages compared with state-of-the-art sensors for High-Altitude Landing, such as those based on LIDAR

    Latency Reduction and Packet Synchronization in Low-Resource Devices Connected by DDS Networks in Autonomous UAVs

    No full text
    Real-time flight controllers are becoming dependent on general-purpose operating systems, as the modularity and complexity of guidance, navigation, and control systems and algorithms increases. The non-deterministic nature of operating systems creates a critical weakness in the development of motion control systems for robotic platforms due to the random delays introduced by operating systems and communication networks. The high-speed operation and sensitive dynamics of UAVs demand fast and near-deterministic communication between the sensors, companion computer, and flight control unit (FCU) in order to achieve the required performance. In this paper, we present a method to assess communications latency between a companion computer and an RTOS open-source flight controller, which is based on an XRCE-DDS bridge between clients hosted in the low-resource environment and the DDS network used by ROS2. A comparison based on the measured statistics of latency illustrates the advantages of XRCE-DDS compared to the standard communication method based on MAVROS-MAVLink. More importantly, an algorithm to estimate latency offset and clock skew based on an exponential moving average filter is presented, providing a tool for latency estimation and correction that can be used by developers to improve synchronization of processes that rely on timely communication between the FCU and companion computer, such as synchronization of lower-level sensor data at the higher-level layer. This addresses the challenges introduced in GNC applications by the non-deterministic nature of general-purpose operating systems and the inherent limitations of standard flight controller hardware

    Retroperitoneoscopic nephrectomy in benign pathology

    No full text
    INTRODUCTION: We report our experience with 43 retroperitoneal laparoscopic nephrectomy for benign kidney disease. MATERIALS AND METHODS: All patients had a poor function from obstructive uropathology and renal atrophy. None of these patients had a previous lumbotomy. Retroperitoneoscopy was performed with 4 trocar port technique in a lateral position. The retroperitoneal space is created by using a Gaur's balloon made of sterile glove. The approach to vascular pedicle was done posteriorly and vessels were clipped by metal and Hem-o-lock (Weck Closure Systems, North Carolina, USA) clips. The sample was intact extracted in an Endo-Bag prolonging one trocar incision. RESULTS: Median operative time was 160 minutes and median blood loss was 200 mL. Four cases (9%) were converted to open surgery: one case due to bleeding and 3 cases due to technical difficulties regarding perirenal adherences. Most patients (39) checked out from the Hospital in day two. Four of them were left over 3 days due to wound complications. CONCLUSIONS: Retroperitoneoscopy offers a safe, effective and reproductive access to nephrectomy for benign pathologies

    Comparative Lipid Production by Oleaginous Yeasts in Hydrolyzates of Lignocellulosic Biomass and Process Strategy for High Titers

    Get PDF
    Oleaginous yeasts can convert sugars to lipids with fatty acid profiles similar to those of vegetable oils, making them attractive for production of biodiesel. Lignocellulosic biomass is an attractive source of sugars for yeast lipid production because it is abundant, potentially low cost, and renewable. However, lignocellulosic hydrolyzates are laden with byproducts which inhibit microbial growth and metabolism. With the goal of identifying oleaginous yeast strains able to convert plant biomass to lipids, we screened 32 strains from the ARS Culture Collection, Peoria, IL to identify four robust strains able to produce high lipid concentrations from both acid and base-pretreated biomass. The screening was arranged in two tiers using undetoxified enzyme hydrolyzates of ammonia fiber expansion (AFEX)-pretreated cornstover as the primary screening medium and acid-pretreated switch grass as the secondary screening medium applied to strains passing the primary screen. Hydrolyzates were prepared at approximately 18–20% solids loading to provide approximately 110 g/L sugars at approximately 56:39:5 mass ratio glucose: xylose:arabinose. A two stage process boosting the molar C:N ratio from 60 to well above 400 in undetoxified switchgrass hydrolyzate was optimized with respect to nitrogen source, C:N, and carbon loading. Using this process three strains were able to consume acetic acid and nearly all available sugars to accumulate 50–65% of cell biomass as lipid (w/w), to produce 25–30 g/L lipid at 0.12– 0.22 g/L/h and 0.13–0.15 g/g or 39–45% of the theoretical yield at pH 6 and 7, a performance unprecedented in lignocellulosic hydrolyzates. Three of the top strains have not previously been reported for the bioconversion of lignocellulose to lipids. The successful identification and development of top-performing lipidproducing yeast in lignocellulose hydrolyzates is expected to advance the economic feasibility of high quality biodiesel and jet fuels from renewable biomass, expanding the market potential for lignocellulose-derived fuels beyond ethanol for automobiles to the entire U.S. transportation market
    corecore