42 research outputs found

    Computational modeling of thermal transport in low-dimensional materials

    Get PDF
    Over the past two decades, controlling thermal transport properties at the nanoscale has become more and more relevant. This is mostly motivated by the need of developing novel energy-harvesting techniques based on thermoelectricity and the necessity to control the heat dissipation in semiconductor devices. In this field, two major research lines can be identified: On one side 'phononics', which aims at developing devices such as thermal diodes, thermal transistors, and thermal logic gates, among others, and on the other side, phonon engineering aiming at controlling heat transport by producing or structurally modifying heterostructures made of novel nanomaterials (e.g., two-dimensional (2D) materials, nanotubes, organic systems). In order to gain insight into the factors controlling nanoscale heat flow and to be able to design highly-efficient thermal devices, the development of new computational approaches is crucial. The primary goal of the present thesis is the implementation of new methodologies addressing classical and quantum thermal transport at the nanoscale. We will focus on three major issues: (i) We will study thermal rectification effect in nanodevices made of novel 2D materials by means of nonequilibrium molecular dynamics simulations. The influence of structural asymmetry and substrate deposition on the thermal rectification will be investigated. (ii) To address quantum ballistic thermal transport in nanoscale systems, we will implement a nonequilibrium Green's functions (NEGF) treatment of transport combined with a density-functional based approach. Here, we will explore the dependence of the thermal transport properties of 2D materials and nanotubes on different intrinsic (structural anisotropy and grain boundaries) and external (molecular functionalization, strain engineering, and doping) factors. Finally, (iii) a time-dependent NEGF formalism will be developed and implemented to probe the transient and steady thermal transport in molecular junctions. In short, our results show that the mechanisms governing the thermal rectification effect in the 2D thermal rectifiers proposed in this work are shape asymmetries, interface material (planar stacking order), and changes in the degree of spatial localization of high-frequency modes (under nonequilibrium heat transport conditions). The rectification effect can be also controlled by substrate engineering. Moreover, we found that quantum ballistic thermal transport in 2D puckered materials displays an anisotropic behavior. The presence of structural disorder in the form of grain boundaries in graphene reduces overall its thermal transport efficiency. Dynamical disorder induced by coupling to a thermostat has however a weaker effect, suggesting that structural defects are playing a major role. External factors have a noticeable influence on the heat transport in new 2D materials and BNC heteronanotubes. On the other hand, we have also been able to characterize, from a quantum point of view, the phonon dynamics in carbon-based molecular junctions. We expect that the results obtained within this thesis will yield new insights into the thermal management of low-dimensional materials, and thus open new routes to the design of thermoelectric and phononic devices.In den letzten zwei Jahrzehnten hat die Kontrolle der thermischen Transporteigenschaften im Nanobereich immer mehr an Bedeutung gewonnen. Dies ist vor allem auf die Notwendigkeit zurückzuführen, neue Energiegewinnungstechniken zu entwickeln, die auf Thermoelektrizität basieren, sowie auf die Problematik, die Wärmeabfuhr in Halbleiterbauelementen kontrollieren zu müssen. In diesem Bereich lassen sich zwei große Forschungslinien identifizieren: Auf der einen Seite 'Phononik', die unter anderem auf die Entwicklung von Bauelementen wie thermischen Dioden, Transistoren und Logikgattern abzielt, und auf der anderen Seite die Phononentechnik, die den Wärmetransport durch Herstellung oder strukturelle Modifikation von Heterostrukturen aus neuartigen Nanomaterialien (z.B. zweidimensionalen (2D) Materialien, Nanoröhren, organischen Systemen) steuert. Um einen Einblick in die Faktoren zu erhalten, die den Wärmefluss im Nanobereich steuern, und um hocheffiziente thermische Bauteile entwickeln zu können, ist die Entwicklung neuer Berechnungsansätze entscheidend. Das Hauptziel der vorliegenden Arbeit ist die Implementierung neuer Methoden, die sich mit dem klassischen und dem quantenthermischen Transport auf der Nanoskala befassen. Wir werden uns auf drei Hauptthemen konzentrieren: (i) Wir werden den thermischen Rektifikationseffekt in Nanobauteilen aus neuartigen 2D-Materialien mit Hilfe von Nichtgleichgewichts-Molekulardynamiksimulationen studieren. Der Einfluss von Strukturasymmetrie und Substratablagerung auf die thermische Rektifikation wird untersucht. (ii) Um den quantenballistischen Wärmetransport in nanoskaligen Systemen anzugehen, werden wir eine NEGF-Behandlung (Nichtgleichgewichts-Greensche Funktionen) des Transports in Kombination mit einem dichtefunktionalen Ansatz implementieren. Hier wird die Abhängigkeit der thermischen Transporteigenschaften von 2D-Materialien und Nanoröhrchen von verschiedenen intrinsischen (strukturelle Anisotropie und Korngrenzen) und externen (molekulare Funktionalisierung, Stammtechnik und Dotierung) Faktoren untersucht. Schließlich wird (iii) ein zeitabhängiger NEGF-Formalismus entwickelt und implementiert, um den transienten und stetigen Wärmetransport in molekularen Verbindungen zu untersuchen. Unsere Ergebnisse zeigen, dass die wesentlichen Mechanismen für die thermische Gleichrichtung in 2D thermischen Gleichrichtern durch Asymmetrien der Bauteilform, das Interface-Material (planare Stapelung Reihenfolge), und änderungen im Grad der räumlichen Lokalisierung von Hochfrequenz-Modi (unter Nicht-Gleichgewicht Wärmetransport-Bedingungen) gegeben sind. Der Gleichrichteffekt kann auch durch die Wahl des Substrats gesteuert werden. Darüber hinaus haben wir festgestellt, dass der quantenballistische Wärmetransport in 2D-Puckered-Materialien ein anisotropes Verhalten zeigt. Das Vorhandensein von strukturellen Störungen in Form von Korngrenzen in Graphen reduziert insgesamt die Effizienz des Wärmetransports. Dynamische Störungen, die durch die Ankopplung an einen Thermostaten hervorgerufen werden, haben jedoch eine schwächere Wirkung, was darauf hindeutet, dass strukturelle Defekte eine große Rolle spielen. Externe Faktoren haben einen nachweislichen Einfluss auf den Wärmetransport in neuen 2D-Materialien und BNC-Heteronanotubes. Weiterhin konnten wir auch die Phononendynamik in kohlenstoffbasierten molekularen Verbindungen quantitativ charakterisieren. Wir erwarten, dass die Ergebnisse dieser Arbeit neue Erkenntnisse über das Wärmemanagement von niedrigdimensionalen Materialien liefern und damit neue Wege für das Design von thermoelektrischen und phononischen Bauelementen eröffnen

    Enabling Inverse Design in Chemical Compound Space: Mapping Quantum Properties to Structures for Small Organic Molecules

    Full text link
    Computer-driven molecular design combines the principles of chemistry, physics, and artificial intelligence to identify novel chemical compounds and materials with desired properties for a specific application. In particular, quantum-mechanical (QM) methods combined with machine learning (ML) techniques have accelerated the estimation of accurate molecular properties, providing a direct mapping from 3D molecular structures to their properties. However, the development of reliable and efficient methodologies to enable \emph{inverse mapping} in chemical space is a long-standing challenge that has not been accomplished yet. Here, we address this challenge by demonstrating the possibility of parametrizing a given chemical space with a finite set of extensive and intensive QM properties. In doing so, we develop a proof-of-concept implementation that combines a Variational Auto-Encoder (VAE) trained on molecular structures with a property encoder designed to learn the latent representation from a set of QM properties. The result of this joint architecture is a common latent space representation for both structures and properties, which enables property-to-structure mapping for small drug-like molecules contained in the QM7-X dataset. We illustrate the capabilities of our approach by conditional generation of \emph{de novo} molecular structures with targeted properties, transition path interpolation for chemical reactions as well as insights into property-structure relationships. Our findings thus provide a proof-of-principle demonstration aiming to enable the inverse property-to-structure design in diverse chemical spaces.Comment: 17 pages, 8 figures, 1 tabl

    Influencia del desorden sobre la estructura atómica y las propiedades electrónicas de nano-partículas mono-metálicas de Cu y Ag

    Get PDF
    Estudia la influencia del desorden químico y estructural sobre la estructura atómica y las propiedades electrónicas de un conjunto de nano-partículas mono-metálicas de plata y cobre con un número de átomos constituyentes especiales (números mágicos icosaedrales) que varía de 13 a 5083 átomos. Las nano-partículas son formadas mediante simulaciones de dinámica molecular usando un potencial de Johnson, basado en el método del átomo incrustado, para el cobre y un potencial tight-hinding para la plata. Además, se estudia el efecto del desorden químico en las nano-partículas haciendo variar la energía de sitio del Hamiltoniano electrónico tipo tight-hinding según una distribución uniforme. El desorden estructural fue producido aumentando la velocidad del enfriamiento durante el proceso de formación de la nano-partícula.Tesi

    Influencia de desorden sobre la distribución de separación de niveles electrónicos de nanopartículas de plata

    Get PDF
    En el presente trabajo se estudia la influencia del desorden estructural y químico sobre la distribución de separación de niveles electrónicos vecinos de un conjunto de nanopartículas de plata, cuyo número de átomos corresponde a los llamados números mágicos (los cuales varían de 147 hasta 5083 átomos). Este estudio se realiza con el fin de conocer como será el comportamiento electrónico de estas nanopartículas bajo la influencia de estos tipos de desordenes, ya que dependiendo de qué distribución de separación de niveles presente el sistema, se le puede asociar a este un carácter metálico, aislante o cercano a estos. Las nanopartículas de plata fueron obtenidas mediante simulación de dinámica molecular empleando un potencial tight-binding. El desorden estructural fue producido aplicando diferentes velocidades de enfriamiento a las nanopartículas de plata en estado líquido y el desorden químico fue provocado introduciendo una energía aleatoria en la energía de sitio del Hamiltoniano electrónico tipo tight-binding. Los resultados indican que, independientemente de las velocidades de enfriamiento usadas en este trabajo, las nanopartículas de plata presentan un comportamiento tipo metálico para todos los tamaños, ya que tienen una distribución de separación de niveles cercana a la distribución de Wigner. Por otro lado, se tiene que el carácter metálico de las nanopartículas de plata se va perdiendo a medida que se aumenta el grado de desorden químico, adquiriendo finalmente un carácter aislante. Es decir, la distribución tipo Wigner cambia a una de tipo Poisson, como es de esperarse para sistemas fuertemente desordenados.-- In the present work I study the influence of the structural and chemical disorder on the nearest neighbor level spacings distribution of a set of silver nanoparticles, whose number of atoms correspond to the well known magic numbers (which vary from 147 to 5083 atoms). The main goal of this work is to know how strong is the influence of disorder on the electronic behavior of these nanoparticles. Thus, we can associate the level spacing distribution to a metallic or insulating character. The silver nanoparticles were obtained by molecular dynamics simulation using a tight-binding potential. The structural disorder was produced by applying different cooling rates to the silver nanoparticles in liquid state, and the chemical disorder was introduced by adding a random energy in the site energy of the tight-binding Hamiltonian of the electrons. The results indicate, that independent of the cooling rates used in this work, silver nanoparticles have a metal-like behavior for all sizes, i. e. the level spacing distribution is close to the Wigner distribution. Furthermore, this metallic character changes after increasing the degree of chemical disorder acquiring finally an insulating character; i. e., the Wigner-like distribution changes to a Poisson-like one, as expected for strongly disordered systems.Tesi

    Molecules in Environments: Towards Systematic Quantum Embedding of Electrons and Drude Oscillators

    Full text link
    We develop a quantum embedding method that enables accurate and efficient treatment of interactions between molecules and an environment, while explicitly including many-body correlations. The molecule is composed of classical nuclei and quantum electrons, whereas the environment is modeled via charged quantum harmonic oscillators. We construct a general Hamiltonian and introduce a variational ansatz for the correlated ground state of the fully interacting molecule/environment system. This wavefunction is optimized via variational Monte Carlo and the ground state energy is subsequently estimated through diffusion Monte Carlo. The proposed scheme allows an explicit many-body treatment of electrostatic, polarization, and dispersion interactions between the molecule and the environment. We study solvation energies and excitation energies of benzene derivatives, obtaining excellent agreement with explicit ab initio calculations and experiment

    Data-driven tailoring of molecular dipole polarizability and frontier orbital energies in chemical compound space.

    Get PDF
    peer reviewedUnderstanding correlations - or lack thereof - between molecular properties is crucial for enabling fast and accurate molecular design strategies. In this contribution, we explore the relation between two key quantities describing the electronic structure and chemical properties of molecular systems: the energy gap between the frontier orbitals and the dipole polarizability. Based on the recently introduced QM7-X dataset, augmented with accurate molecular polarizability calculations as well as analysis of functional group compositions, we show that polarizability and HOMO-LUMO gap are uncorrelated when considering sufficiently extended subsets of the chemical compound space. The relation between these two properties is further analyzed on specific examples of molecules with similar composition as well as homooligomers. Remarkably, the freedom brought by the lack of correlation between molecular polarizability and HOMO-LUMO gap enables the design of novel materials, as we demonstrate on the example of organic photodetector candidates.R-AGR-3391 - INTER/FWO/17/11656483 MONODISP (01/06/2018 - 31/05/2022) - TKATCHENKO AlexandreR-AGR-3440 - PRIDE17/12252781 DRIVEN_Common (01/09/2018 - 28/02/2025) - ZILIAN Andrea

    Electron transport through self-assembled monolayers of tripeptides

    Full text link
    We report how the electron transport through a solid-state metal/Gly-Gly-His tripeptide (GGH) monolayer/metal junction and the metal/GGH work function are modified by the GGH complexation with Cu2+ ions. Conducting AFM is used to measure the current-voltage histograms. The work function is characterized by combining macroscopic Kelvin probe and Kelvin probe force microscopy at the nanoscale. We observe that the Cu2+ ions complexation with the GGH monolayer is highly dependent on the molecular surface density and results in opposite trends. In the case of a high density monolayer the conformational changes are hindered by the proximity of the neighboring peptides, hence forming an insulating layer in response to copper-complexation. Whereas the slightly lower density monolayers allow for the conformational change to a looped peptide wrapping the Cu-ion, which results in a more conductive monolayer. Copper-ion complexation to the high- and low-density monolayers systematically induces an increase of the work functions. Copper-ion complexation to the low-density monolayer induces an increase of electron transport efficiency, while the copper-ion complexation to the high-density monolayer results in a slight decrease of electron transport. Both of the observed trends are in agreement with first-principle calculations. Complexed copper to low density GGH-monolayer induces a new gap state slightly above the Au Fermi energy that is absent in the high density monolayer.Comment: Full paper with supporting informatio

    QM7-X: A comprehensive dataset of quantum-mechanical properties spanning the chemical space of small organic molecules

    Get PDF
    We introduce QM7-X, a comprehensive dataset of 42 physicochemical properties for \approx 4.2 M equilibrium and non-equilibrium structures of small organic molecules with up to seven non-hydrogen (C, N, O, S, Cl) atoms. To span this fundamentally important region of chemical compound space (CCS), QM7-X includes an exhaustive sampling of (meta-)stable equilibrium structures - comprised of constitutional/structural isomers and stereoisomers, e.g., enantiomers and diastereomers (including cis-/trans- and conformational isomers) - as well as 100 non-equilibrium structural variations thereof to reach a total of \approx 4.2 M molecular structures. Computed at the tightly converged quantum-mechanical PBE0+MBD level of theory, QM7-X contains global (molecular) and local (atom-in-a-molecule) properties ranging from ground state quantities (such as atomization energies and dipole moments) to response quantities (such as polarizability tensors and dispersion coefficients). By providing a systematic, extensive, and tightly-converged dataset of quantum-mechanically computed physicochemical properties, we expect that QM7-X will play a critical role in the development of next-generation machine-learning based models for exploring greater swaths of CCS and performing in silico design of molecules with targeted properties
    corecore