5 research outputs found

    Binding of Capsaicin to the TRPV1 Ion Channel

    No full text
    Transient receptor potential (TRP) ion channels constitute a notable family of cation channels involved in the ability of an organisms to detect noxious mechanical, thermal, and chemical stimuli that give rise to the perception of pain, taste, and changes in temperature. One of the most experimentally studied agonist of TRP channels is capsaicin, which is responsible for the burning sensation produced when chili pepper is in contact with organic tissues. Thus, understanding how this molecule interacts and regulates TRP channels is essential to high impact pharmacological applications, particularly those related to pain treatment. The recent publication of a three-dimensional structure of the vanilloid receptor 1 (TRPV1) in the absence and presence of capsaicin from single particle electron cryomicroscopy experiments provides the opportunity to explore these questions at the atomic level. In the present work, molecular docking and unbiased and biased molecular dynamics simulations were employed to generate a structural model of the capsaicinā€“channel complex. In addition, the standard free energy of binding was estimated using alchemical transformations coupled with conformational, translational, and orientational restraints on the ligand. Key binding modes consistent with previous experimental data are identified, and subtle but essential dynamical features of the binding site are characterized. These observations shed some light into how TRPV1 interacts with capsaicin, and may help to refine design parameters for new TRPV1 antagonists, and potentially guide further developments of TRP channel modulators

    Transferable Mixing of Atomistic and Coarse-Grained Water Models

    No full text
    Dual-resolution approaches for molecular simulations combine the best of two worlds, providing atomic details in regions of interest and coarser but much faster descriptions of less-relevant parts of molecular systems. Given the abundance of water in biomolecular systems, reducing the computational cost of simulating bulk water without perturbing the soluteā€™s properties is a very attractive strategy. Here we show that the coarse-grained model for water called WatFour (WT4) can be combined with any of the three most used water models for atomistic simulations (SPC, TIP3P, and SPC/E) without modifying the characteristics of the atomistic solvent and solutes. The equivalence of fully atomistic and hybrid solvation approaches is assessed by comparative simulations of pure water, electrolyte solutions, and the Ī²1 domain of streptococcal protein G, for which comparisons between experimental and calculated chemical shifts at <sup>13</sup>CĪ± are equivalent

    Mixing Atomistic and Coarse Grain Solvation Models for MD Simulations: Let WT4 Handle the Bulk

    No full text
    Accurate simulation of biomolecular systems requires the consideration of solvation effects. The arrangement and dynamics of water close to a solute are strongly influenced by the solute itself. However, as the soluteā€“solvent distance increases, the water properties tend to those of the bulk liquid. This suggests that bulk regions can be treated at a coarse grained (CG) level, while keeping the atomistic details around the solute. Since water represents about 80% of any biological system, this approach may offer a significant reduction in the computational cost of simulations without compromising atomistic details. We show here that mixing the popular SPC water model with a CG model for solvation (called WatFour) can effectively mimic the hydration, structure, and dynamics of molecular systems composed of pure water, simple electrolyte solutions, and solvated macromolecules. As a nontrivial example, we present simulations of the SNARE membrane fusion complex, a trimeric proteinā€“protein complex embedded in a double phospholipid bilayer. Comparison with a fully atomistic reference simulation illustrates the equivalence between both approaches

    Lateral Fenestrations in K<sup>+</sup>ā€‘Channels Explored Using Molecular Dynamics Simulations

    No full text
    Potassium channels are of paramount physiological and pathological importance and therefore constitute significant drug targets. One of the keys to rationalize the way drugs modulate ion channels is to understand the ability of such small molecules to access their respective binding sites, from which they can exert an activating or inhibitory effect. Many computational studies have probed the energetics of ion permeation, and the mechanisms of voltage gating, but little is known about the role of fenestrations as possible mediators of drug entry in potassium channels. To explore the existence, structure, and conformational dynamics of transmembrane fenestrations accessible by drugs in potassium channels, molecular dynamics simulation trajectories were analyzed from three potassium channels: the open state voltage-gated channel Kv1.2, the G protein-gated inward rectifying channel GIRK2 (Kir3.2), and the human two-pore domain TWIK-1 (K2P1.1). The main results of this work were the identification of the sequence identity of four main lateral fenestrations of similar length and with bottleneck radius in the range of 0.9ā€“2.4 ƅ for this set of potassium channels. It was found that the fenestrations in Kv1.2 and Kir3.2 remain closed to the passage of molecules larger than water. In contrast, in the TWIK-1 channel, both open and closed fenestrations are sampled throughout the simulation, with bottleneck radius shown to correlate with the random entry of lipid membrane molecules into the aperture of the fenestrations. Druggability scoring function analysis of the fenestration regions suggests that Kv and Kir channels studied are not druggable in practice due to steric constraining of the fenestration bottleneck. A high (>50%) fenestration sequence identity was found in each potassium channel subfamily studied, Kv1, Kir3, and K2P1. Finally, the reported fenestration sequence of TWIK-1 compared favorably with another channel, K2P channel TREK-2, reported to possess open fenestrations, suggesting that K2P channels could be druggable via fenestrations, for which we reported atomistic detail of the fenestration region, including the flexible residues M260 and L264 that interact with POPC membrane in a concerted fashion with the aperture and closure of the fenestrations

    Small Details Matter: The 2ā€²-Hydroxyl as a Conformational Switch in RNA

    No full text
    While DNA is mostly a primary carrier of genetic information and displays a regular duplex structure, RNA can form very complicated and conserved 3D structures displaying a large variety of functions, such as being an intermediary carrier of the genetic information, translating such information into the protein machinery of the cell, or even acting as a chemical catalyst. At the base of such functional diversity is the subtle balance between different backbone, nucleobase, and ribose conformations, finely regulated by the combination of hydrogen bonds and stacking interactions. Although an apparently simple chemical modification, the presence of the 2ā€²OH in RNA has a profound effect in the ribonucleotide conformational balance, adding an extra layer of complexity to the interactions network in RNA. In the present work, we have combined database analysis with extensive molecular dynamics, quantum mechanics, and hybrid QM/MM simulations to provide direct evidence on the dramatic impact of the 2ā€²OH conformation on sugar puckering. Calculations provide evidence that proteins can modulate the 2ā€²OH conformation to drive sugar repuckering, leading then to the formation of bioactive conformations. In summary, the 2ā€²OH group seems to be a primary molecular switch contributing to specific proteinā€“RNA recognition
    corecore