3 research outputs found

    A vehicle routing model with split delivery and stop nodes

    Get PDF
    In this work, a new variant of the Capacitated Vehicle Routing Problem (CVRP) is presented where the vehicles cannot perform any route leg longer than a given length L (although the routes can be longer). Thus, once a route leg length is close to L, the vehicle must go to a stop node to end the leg or return to the depot. We introduce this condition in a variation of the CVRP, the Split Delivery Vehicle Routing Problem, where multiple visits to a customer by different vehicles are allowed. We present two formulations for this problem which we call Split Delivery Vehicle Routing Problem with Stop Nodes: a vehicle flow formulation and a commodity flow formulation. Because of the complexity of this problem, a heuristic approach is developed. We compare its performance with and without the stop nodesSplit delivery vehicle routing problem, Stop node, Granular neighborhood, Tabu search

    A vehicle routing model with split delivery and stop nodes

    Get PDF
    In this work, a new variant of the Capacitated Vehicle Routing Problem (CVRP) is presented where the vehicles cannot perform any route leg longer than a given length L (although the routes can be longer). Thus, once a route leg length is close to L, the vehicle must go to a stop node to end the leg or return to the depot. We introduce this condition in a variation of the CVRP, the Split Delivery Vehicle Routing Problem, where multiple visits to a customer by different vehicles are allowed. We present two formulations for this problem which we call Split Delivery Vehicle Routing Problem with Stop Nodes: a vehicle flow formulation and a commodity flow formulation. Because of the complexity of this problem, a heuristic approach is developed. We compare its performance with and without the stop node

    A Randomized Granular Tabu Search heuristic for the split delivery vehicle routing problem

    No full text
    The Split Delivery Vehicle Routing Problem (SDVRP) is a variant of the classical Capacitated Vehicle Routing Problem where multiple visits to each customer are allowed. It is an NP-hard problem where exact solutions are difficult to obtain in a reasonable time. This paper shows a tabu search heuristic with granular neighborhood called Randomized Granular Tabu Search that uses a tabu search technique in a bounded neighborhood (granular) defined by the most promising arcs and introduces some new local operators in the local granular tabu search. The algorithm also uses a random selection of the move to be introduced at the current solution. In addition, the local search procedures can explore infeasible neighborhoods in terms of vehicle capacity. These two ideas help to escape from local optima. After the local search process, the algorithm solves one traveling salesman problem per route to improve the solution. Finally, a computational study shows that the proposed method improves many of the best-known solutions for the benchmark instances of the SDVRP literature
    corecore