5,455 research outputs found

    Four methods to distinguish between fractal dimensions in time series through recurrence quantification analysis

    Get PDF
    Fractal properties in time series of human behavior and physiology are quite ubiquitous, and several methods to capture such properties have been proposed in the past decades. Fractal properties are marked by similarities in statistical characteristics over time and space, and it has been suggested that such properties can be well-captured through recurrence quantification analysis. However, no methods to capture fractal fluctuations by means of recurrence-based methods have been developed yet. The present paper takes this suggestion as a point of departure to propose and test several approaches to quantifying fractal fluctuations in synthetic and empirical time-series data using recurrence-based analysis. We show that such measures can be extracted based on recurrence plots, and contrast the different approaches in terms of their accuracy and range of applicability

    ADS-B/MLAT surveillance system from high altitude platform systems

    Get PDF
    In this work the potential usage of ADS-Band Wide Area Multilateration(WAM)Surveillance with High Altitude Platform Systems(HAPS)is considered.The paper investigates the possible conïŹguration ofthesystem,thelinkbudget,thege-ometryandthelimitationduetotherandomaccesstothechannelbytheModeSSignals(capacity).ThesurveillanceperformanceoftheproposedarchitectureinaWideAreaMultilaterationcontextisevaluatedbybothsimulationandstatisticalanalysis(CramerRaoLowerBound)

    Large eddy simulations of a utility-scale horizontal axis wind turbine including unsteady aerodynamics and fluid-structure interaction modelling

    Get PDF
    Growing horizontal axis wind turbines are increasingly exposed to significant sources of unsteadiness, such as tower shadowing, yawed or waked conditions and environmental effects. Due to increased dimensions, the use of steady tabulated airfoil coefficients to determine the airloads along long blades can be questioned in those numerical fluid models that do not have the sufficient resolution to solve explicitly and dynamically the flow close to the blade. Various models exist to describe unsteady aerodynamics (UA). However, they have been mainly implemented in engineering models, which lack the complete capability of describing the unsteady and multiscale nature of wind energy. To improve the description of the blades' aerodynamic response, a 2D unsteady aerodynamics model is used in this work to estimate the airloads of the actuator line model in our fluid–structure interaction (FSI) solver, based on 3D large eddy simulation. At each section along the actuator lines, a semi-empirical Beddoes-Leishman model includes the effects of noncirculatory terms, unsteady trailing edge separation, and dynamic stall in the dynamic evaluation of the airfoils' aerodynamic coefficients. The aeroelastic response of a utility-scale wind turbine under uniform, laminar and turbulent, sheared inflows is examined with one- and two-way FSI coupling between the blades' structural dynamics and local airloads, with and without the enhanced aerodynamics' description. The results show that the external half of the blade is dominated by aeroelastic effects, whereas the internal one is dominated by significant UA phenomena, which was possible to represent only thanks to the additional model implemented

    Numerical tests of AdS/CFT at strong coupling

    Full text link
    We study various correlation functions (two and three point functions) in a large NN matrix model of six commuting matrices with a numerical Monte Carlo algorithm. This is equivalent to a model of a gas of particles in six dimensions with a confining quadratic potential and logarithmic repulsions at finite temperature, where we are measuring the leading order non-gaussianities in the thermal fluctuations. This is a simplified model of the low energy dynamics of N=4 SYM at strong coupling. We find strong evidence that the simplified matrix model matches with the dual gravitational description of three point functions in the AdS/CFT correspondence.Comment: 23 pages, 7 figures, revtex. v2: minor correction

    Budget Feasible Mechanisms on Matroids

    Get PDF
    Motivated by many practical applications, in this paper we study budget feasible mechanisms with the goal of procuring an independent set of a matroid. More specifically, we are given a matroid M= (E, I). Each element of the ground set E is controlled by a selfish agent and the cost of the element is private information of the agent itself. A budget limited buyer has additive valuations over the elements of E. The goal is to design an incentive compatible budget feasible mechanism which procures an independent set of the matroid of largest possible value. We also consider the more general case of the pair M= (E, I) satisfying only the hereditary property. This includes matroids as well as matroid intersection. We show that, given a polynomial time deterministic algorithm that returns an α-approximation to the problem of finding a maximum-value independent set in M, there exists an individually rational, truthful and budget feasible mechanism which is (3 α+ 1) -approximated and runs in polynomial time, thus yielding also a 4-approximation for the special case of matroids

    Preferential attachment in the growth of social networks: the case of Wikipedia

    Get PDF
    We present an analysis of the statistical properties and growth of the free on-line encyclopedia Wikipedia. By describing topics by vertices and hyperlinks between them as edges, we can represent this encyclopedia as a directed graph. The topological properties of this graph are in close analogy with that of the World Wide Web, despite the very different growth mechanism. In particular we measure a scale--invariant distribution of the in-- and out-- degree and we are able to reproduce these features by means of a simple statistical model. As a major consequence, Wikipedia growth can be described by local rules such as the preferential attachment mechanism, though users can act globally on the network.Comment: 4 pages, 4 figures, revte

    Enumerating 3-generated axial algebras of Monster type

    Full text link
    An axial algebra is a commutative non-associative algebra generated by axes, that is, primitive, semisimple idempotents whose eigenvectors multiply according to a certain fusion law. The Griess algebra, whose automorphism group is the Monster, is an example of an axial algebra. We say an axial algebra is of Monster type if it has the same fusion law as the Griess algebra. The 22-generated axial algebras of Monster type, called Norton-Sakuma algebras, have been fully classified and are one of nine isomorphism types. In this paper, we enumerate and construct the 33-generated axial algebras of Monster type which do not contain a 5A5\textrm{A}, or 6A6\textrm{A} subalgebra.Comment: 27 pages. arXiv admin note: text overlap with arXiv:1804.0058
    • 

    corecore