21 research outputs found

    Bioflocculant production by a consortium of Streptomyces and Cellulomonas species and media optimization via surface response model

    Get PDF
    AbstractSpecies of actinobacteria previously isolated from Tyume River in the Eastern Cape Province of South Africa and identified by 16S rDNA sequence as Cellulomonas and Streptomyces species were evaluated as a consortium for the production of bioflocculant. Sucrose, peptone and magnesium chloride were the nutritional sources which supported optimal production of bioflocculant resulting in flocculation activities of 91%, 82% and 78% respectively. Response surface design revealed sucrose, peptone and magnesium chloride as critical media components following Plackett–Burman design, while the central composite design showed optimum concentration of the critical nutritional source as 16.0g/L (sucrose), 1.5g/L (peptone) and 1.6g/L (magnesium chloride) yielding optimal flocculation activity of 98.9% and bioflocculant yield of 4.45g/L. FTIR spectrometry of the bioflocculant indicated the presence of carboxyl, hydroxyl and amino groups, typical for heteropolysaccharide, while SEM imaging revealed an interwoven clump-like structure. The molecular weight distribution of the constituents of the bioflocculants ranged 494.81–18,300.26Da thus, an indication of heterogeneity in composition. Additionally, the chemical analyses of the purified bioflocculant revealed the presence of polysaccharides and proteins with neutral sugar, amino sugar and uronic acids in the following concentration: 5.7mg, 9.3mg and 17.8mg per 100mg. The high flocculation activity of the bioflocculant suggests commercial potential

    Antibiotic Producing Potentials of Three Freshwater Actinomycetes Isolated from the Eastern Cape Province of South Africa

    Get PDF
    Crude extracts of three actinomycetes species belonging to Saccharopolyspora (TR 046 and TR 039) and Actinosynnema (TR 024) genera were screened for antibacterial activities against a panel of several bacterial strains. The extracts showed antibacterial activities against both gram-negative and gram-positive test bacteria with inhibition zones ranging from 8 to 28 mm (TR 046); 8 to15 mm (TR 039); and 10 to 13 mm (TR 024). The minimum inhibitory concentrations ranged from 0.078 to 10 mg/mL (TR 046); 5 to >10 mg/mL (TR 039); and 1.25 to 5 mg/mL (TR 024). Time-kill studies revealed that crude extract of TR 046 showed strong bactericidal activity against Bacillus pumilus (ATCC14884), reducing the bacterial load by 104 cfu/mL and 102 cfu/mL at 4× MIC and 2× MIC, respectively, after 6 h of exposure. Similarly, against Proteus vulgaris (CSIR 0030), crude extract of TR 046 achieved a 0.9log10 and 0.13log10 cfu/mL reduction at 5 mg/mL (4× MIC) and 1.25 mg/mL (2× MIC) after 12 h of exposure. The extract was however weakly bactericidal against two environmental bacterial strains (Klebsiella pneumoniae and Staphylococcus epidermidis); and against Pseudomonas aeruginosa (ATCC 19582): the extract showed bacteriostatic activities at all concentrations tested. These freshwater actinomycetes appear to have immense potential as a source of new antibacterial compound(s)

    Assessment of Bioflocculant Production by Bacillus sp. Gilbert, a Marine Bacterium Isolated from the Bottom Sediment of Algoa Bay

    Get PDF
    The bioflocculant-producing potentials of a marine bacteria isolated from the bottom sediment of Algoa Bay was investigated using standard methods. The 16S rDNA sequence analysis revealed 98% similarity to that of Bacillus sp. HXG-C1 and the nucleotide sequence was deposited in GenBank as Bacillus sp. Gilbert with accession number HQ537128. Bioflocculant was optimally produced when sucrose (72% flocculating activity) and ammonium chloride (91% flocculating activity) were used as sole sources of carbon and nitrogen, respectively; an initial pH 6.2 of the production medium; and Mg2+ as cation. Chemical analysis of the purified bioflocculant revealed the compound to be a polysaccharide

    Studies on Bioflocculant Production by Arthrobacter sp. Raats, a Freshwater Bacteria Isolated from Tyume River, South Africa

    Get PDF
    A bioflocculant-producing bacteria was isolated from Tyume River in the Eastern Cape Province, South Africa and identified by 16S rRNA gene nucleotide sequence to have 91% similarity to Arthrobacter sp. 5J12A, and the nucleotide sequence was deposited in GenBank as Arthrobacter sp. Raats (accession number HQ875723). The bacteria produced an extracellular bioflocculant when grown aerobically in a production medium containing glucose as sole carbon source and had an initial pH of 7.0. Influences of carbon, nitrogen and metal ions sources, as well as initial pH on flocculating activity were investigated. The bacteria optimally produced the bioflocullant when lactose and urea were used as sole sources of carbon and nitrogen respectively with flocculating activities of 75.4% and 83.4% respectively. Also, the bacteria produced the bioflocculant optimally when initial pH of the medium was 7.0 (flocculating activity 84%), and when Mg2+ was used as cation (flocculating activity 77%). Composition analyses indicated the bioflocculant to be principally a glycoprotein made up of about 56% protein and 25% total carbohydrate

    Halomonas sp. OKOH—A Marine Bacterium Isolated from the Bottom Sediment of Algoa Bay—Produces a Polysaccharide Bioflocculant: Partial Characterization and Biochemical Analysis of Its Properties

    No full text
    A bioflocculant-producing bacterium isolated from seawater was identified based on 16S rRNA gene nucleotide sequence to have 99% similarity to that of Halomonas sp. Au160H and the nucleotide sequence was deposited as Halomonas sp. OKOH (Genbank accession number is HQ875722). Influences of carbon source, nitrogen source, salt ions and pH on flocculating activity were investigated. The bioflocculant was optimally produced when glucose (87% flocculating activity) and urea (88% flocculating activity) were used as sources of carbon and nitrogen, respectively. Also, initial pH of 7.0 and Ca2+ supported optimal production of the bioflocculant with flocculating activities of 87% respectively. Chemical analyses revealed the bioflocculant to be a polysaccharide

    Bacillus toyonensis Strain AEMREG6, a Bacterium Isolated from South African Marine Environment Sediment Samples Produces a Glycoprotein Bioflocculant

    No full text
    A bioflocculant-producing bacteria, isolated from sediment samples of a marine environment in the Eastern Cape Province of South Africa demonstrated a flocculating activity above 60% for kaolin clay suspension. Analysis of the 16S ribosomal deoxyribonucleic acid (rDNA) nucleotide sequence of the isolate in the GenBank database showed 99% similarity to Bacillus toyonensis strain BCT-7112 and it was deposited in the GenBank as Bacillus toyonensis strain AEMREG6 with accession number KP406731. The bacteria produced a bioflocculant (REG-6) optimally in the presence of glucose and NH4NO3 as the sole carbon and nitrogen source, respectively, initial medium pH of 5 and Ca2+ as the cation of choice. Chemical analysis showed that purified REG-6 was a glycoprotein mainly composed of polysaccharide (77.8%) and protein (11.5%). It was thermally stable and had strong flocculating activity against kaolin suspension over a wide range of pH values (3–11) with a relatively low dosage requirement of 0.1 mg/mL in the presence of Mn2+. Fourier transform infrared spectroscopy (FTIR) revealed the presence of hydroxyl, carboxyl and amide groups preferred for flocculation. Scanning electron microscopy (SEM) revealed that bridging was the main flocculation mechanism of REG-6. The outstanding flocculating performance of REG-6 holds great potential to replace the hazardous chemical flocculants currently used in water treatment

    Phytofabrication of Silver/Silver Chloride Nanoparticles Using Aqueous Leaf Extract of Oedera genistifolia: Characterization and Antibacterial Potential

    No full text
    In this present study, silver nanoparticles (Ag/AgCl NPs) were synthesized using an aqueous leaf extract of Oedera genistifolia as a reducing agent. The biosynthesized Ag/AgCl NPs was characterized by UV-visible spectrophotometry, transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). In addition, sequel to antibacterial assay, the cytotoxic effect of the phytofabricated Ag/AgCl NPs was assessed against the HeLa cell line (human cervix adenocarcinoma). The results of the characterization of the synthesized Ag/AgCl NPs indicate the successful synthesis using plant extract as a reducing agent, with UV-Vis spectra between 290–360 nm. TEM results showed that Ag/AgCl NPs was spherical in shape with an average size of 34.2 nm. EDX analysis revealed that the particles were predominantly composed of carbon, oxygen, chlorine, and silver, while FTIR identified major phytochemical compounds, which could be responsible for bio-reducing and capping potential. XRD analysis showed the crystallinity of Ag/AgCl NPs, with a face-centred cubic structure. The studied Ag/AgCl NPs had no cytotoxic effect on HeLa cells and exhibited antibacterial activity (minimum inhibitory concentration (MIC) 0.25–1 mg/mL; minimum bactericidal concentration (MBC) 2–16 mg/mL) against both the Gram-negative and Gram-positive bacteria investigated. Findings from this study suggest that this plant as a good candidate for producing new antibacterial drugs

    A Freshwater Streptomyces, Isolated from Tyume River, Produces a Predominantly Extracellular Glycoprotein Bioflocculant

    Get PDF
    We evaluated bioflocculant production by a freshwater actinobacteria whose 16S rDNA nucleotide sequence was deposited in GenBank as <em>Streptomyces</em> sp. Gansen (accession number HQ537129). Optimum culture conditions for bioflocculant production were an initial medium pH of 6.8, incubation temperature of 30 °C, agitation speed of 160 rpm and an inoculum size of 2% (v/v) of cell density 1.5 × 10<sup>8</sup> cfu/mL. The carbon, nitrogen and cation sources for optimum bioflocculant production were glucose (89% flocculating activity), ammonium sulfate (76% flocculating activity) and MgCl<sub>2</sub>. Bioflocculant pyrolysis showed three step decomposition indicative of three components while chemical analyses showed 78% carbohydrate and 22% protein (wt/wt). The mass ratio of neutral sugar, amino sugar and uronic acids was 4.6:2.4:3. FTIR spectrometry indicated the presence of carboxyl, hydroxyl and amino groups, typical for heteropolysaccharide. The bioflocculant showed a lattice structure as seen by SEM imaging. Its high flocculation activity suggests its suitability for industrial applicability

    Characterization of a Bioflocculant (MBF-UFH) Produced by Bacillus sp. AEMREG7

    No full text
    A bioflocculant named MBF-UFH produced by a Bacillus species isolated from sediment samples of Algoa Bay of the Eastern Cape Province of South Africa was characterized. The bacterial identification was through 16S rDNA sequencing; nucleotide sequences were deposited in GenBank as Bacillus sp. AEMREG7 with Accession Number KP659187. The production of the bioflocculant was observed to be closely associated with cell growth. The bioflocculant had the highest flocculating activity of 83.2% after 72 h of cultivation, and approximately 1.6 g of purified MBF-UFH was recovered from 1 L of fermentation broth. Its chemical analyses indicated that it is a glycoprotein composed of polysaccharide (76%) and protein (14%). Fourier transform infrared spectroscopy (FTIR) revealed that it consisted of hydroxyl, amide, carboxyl and methoxyl as the functional moieties. Scanning electron microscopy (SEM) revealed the amorphous structure of MBF-UFH and flocculated kaolin clay particles. The maximum flocculating activity of 92.6% against kaolin clay suspension was achieved at 0.3 mg/mL over pH ranges of 3–11 with the peak flocculating rate at pH 8 in the presence of MgCl2. The bioflocculant retained high flocculating activity of 90% after heating at 100 °C for 1 h. MBF-UFH appears to have immense potential as an alternative to conventional chemical flocculants
    corecore