65 research outputs found
Stable Differences in Intrinsic Mitochondrial Membrane Potential of Tumor Cell Subpopulations Reflect Phenotypic Heterogeneity
Heterogeneity among cells that constitute a solid tumor is important in determining disease progression. Our previous work established that, within a population of metastatic colonic tumor cells, there are minor subpopulations of cells with stable differences in their intrinsic mitochondrial membrane potential (ΔΨm), and that these differences in ΔΨm are linked to tumorigenic phenotype. Here we expanded this work to investigate primary mammary, as well as colonic, tumor cell lines. We show that within a primary mammary tumor cell population, and in both primary and metastatic colonic tumor cell populations, there are subpopulations of cells with significant stable variations in intrinsic ΔΨm. In each of these 3 tumor cell populations, cells with relatively higher intrinsic ΔΨm exhibit phenotypic properties consistent with promotion of tumor cell survival and expansion. However, additional properties associated with invasive potential appear in cells with higher intrinsic ΔΨm only from the metastatic colonic tumor cell line. Thus, it is likely that differences in the intrinsic ΔΨm among cells that constitute primary mammary tumor populations, as well as primary and metastatic colonic tumor populations, are markers of an acquired tumor phenotype which, within the context of the tumor, influence the probability that particular cells will contribute to disease progression
γδ T Cells Provide an Early Source of Interferon γ in Tumor Immunity
Interferon (IFN)-γ is necessary for tumor immunity, however, its initial cellular source is unknown. Because γδ T cells primarily produce this cytokine upon activation, we hypothesized that they would provide an important early source of IFN-γ in tumor immunosurveillance. To address this hypothesis, we first demonstrated that γδ T cell–deficient mice had a significantly higher incidence of tumor development after challenge with a chemical carcinogen methylcholanthrene (MCA) or inoculation with the melanoma cell line B16. In wild-type mice, γδ T cells were recruited to the site of tumor as early as day 3 after inoculation, followed by αβ T cells at day 5. We then used bone marrow chimeras and fetal liver reconstitutions to create mice with an intact γδ T cell repertoire but one that was specifically deficient in the capacity to produce IFN-γ. Such mice had a higher incidence of tumor development, induced either with MCA or by inoculation of B16 melanoma cells, compared with mice with IFN-γ–competent γδ T cells. Moreover, genetic deficiency of γδ T cells resulted in impaired IFN-γ production by tumor antigen-triggered αβ T cell upon immunization with tumor lysate. These results demonstrate that γδ T cells can play a necessary role in tumor immunity through provision of an early source of IFN-γ that in turn may regulate the function of tumor-triggered αβ T cells
Nervous-system-specific carcinogenesis by ethylnitrosourea in the rat: molecular and cellular aspects
A lead in the search for cellular determinants favoring neoplastic transformation may be provided by the pronounced tissue specificity of the oncogenic effect of certain carcinogens which do not require enzymatic metabolic activation, i.e., in cases where this specificity cannot be due to tissue differences in the activity of enzymes involved in the formation of the ultimate reactants. A carcinogen that fulfills this condition is the ethylating agent N-ethyl-N-nitrosourea (EtNU). Alkylation of nucleic acid constituents by N-nitroso compounds in relation to mutagenesis and carcinogenesis has received considerable attention recently
Non-stem cell lineages as an alternative origin of intestinal tumorigenesis in the context of inflammation
According to conventional views, colon cancer originates from stem cells. However, inflammation, a key risk factor for colon cancer, has been shown to suppress intestinal stemness. Here, we used Paneth cells as a model to assess the capacity of differentiated lineages to trigger tumorigenesis in the context of inflammation in mice. Upon inflammation, Paneth cell-specific Apc mutations led to intestinal tumors reminiscent not only of those arising in patients with inflammatory bowel disease, but also of a larger fraction of human sporadic colon cancers. The latter is possibly because of the inflammatory consequences of western-style dietary habits, a major colon cancer risk factor. Machine learning methods designed to predict the cell-of-origin of cancer from patient-derived tumor samples confirmed that, in a substantial fraction of sporadic cases, the origins of colon cancer reside in secretory lineages and not in stem cells.</p
PKCα tumor suppression in the intestine is associated with transcriptional and translational inhibition of cyclin D1
Alterations in PKC isozyme expression and aberrant induction of cyclin D1 are early events in intestinal tumorigenesis. Previous studies have identified cyclin D1 as a major target in the antiproliferative effects of PKCα in non-transformed intestinal cells; however, a link between PKC signaling and cyclin D1 in colon cancer remained to be established. The current study further characterized PKC isozyme expression in intestinal neoplasms and explored the consequences of restoring PKCα or PKCδ in a panel of colon carcinoma cell lines. Consistent with patterns of PKC expression in primary tumors, PKCα and δ levels were generally reduced in colon carcinoma cell lines, PKCβII was elevated and PKCε showed variable expression, thus establishing the suitability of these models for analysis of PKC signaling. While colon cancer cells were insensitive to the effects of PKC agonists on cyclin D1 levels, restoration of PKCα downregulated cyclin D1 by two independent mechanisms. PKCα expression consistently (a) reduced steady-state levels of cyclin D1 by a novel transcriptional mechanism not previously seen in non-transformed cells, and (b) re-established the ability of PKC agonists to activate the translational repressor 4E-BP1 and inhibit cyclin D1 translation. In contrast, PKCδ had modest and variable effects on cyclin D1 steady state levels and failed to restore responsiveness to PKC agonists. Notably, PKCα expression blocked anchorage-independent growth in colon cancer cells via a mechanism partially dependent on cyclin D1 deficiency, while PKCδ had only minor effects. Loss of PKCα and effects of its re-expression were independent of the status of the APC/β-catenin signaling pathway or known genetic alterations, indicating that they are a general characteristic of colon tumors. Thus, PKCα is a potent negative regulator of cyclin D1 expression and anchorage-independent cell growth in colon tumor cells, findings that offer important perspectives on the frequent loss of this isozyme during intestinal carcinogenesis
Intrinsic Mitochondrial Membrane Potential and Associated Tumor Phenotype Are Independent of MUC1 Over-Expression
We have established previously that minor subpopulations of cells with stable differences in their intrinsic mitochondrial membrane potential (Δψm) exist within populations of mammary and colonic carcinoma cells and that these differences in Δψm are linked to tumorigenic phenotypes consistent with increased probability of participating in tumor progression. However, the mechanism(s) involved in generating and maintaining stable differences in intrinsic Δψm and how they are linked to phenotype are unclear. Because the mucin 1 (MUC1) oncoprotein is over-expressed in many cancers, with the cytoplasmic C-terminal fragment (MUC1 C-ter) and its integration into the outer mitochondrial membrane linked to tumorigenic phenotypes similar to those of cells with elevated intrinsic Δψm, we investigated whether endogenous differences in MUC1 levels were linked to stable differences in intrinsic Δψm and/or to the tumor phenotypes associated with the intrinsic Δψm. We report that levels of MUC1 are significantly higher in subpopulations of cells with elevated intrinsic Δψm derived from both mammary and colonic carcinoma cell lines. However, using siRNA we found that down-regulation of MUC1 failed to significantly affect either the intrinsic Δψm or the tumor phenotypes associated with increased intrinsic Δψm. Moreover, whereas pharmacologically mediated disruption of the Δψm was accompanied by attenuation of tumor phenotype, it had no impact on MUC1 levels. Therefore, while MUC1 over-expression is associated with subpopulations of cells with elevated intrinsic Δψm, it is not directly linked to the generation or maintenance of stable alterations in intrinsic Δψm, or to intrinsic Δψm associated tumor phenotypes. Since the Δψm is the focus of chemotherapeutic strategies, these data have important clinical implications in regard to effectively targeting those cells within a tumor cell population that exhibit stable elevations in intrinsic Δψm and are most likely to contribute to tumor progression
Tumor Associated Macrophages Protect Colon Cancer Cells from TRAIL-Induced Apoptosis through IL-1β- Dependent Stabilization of Snail in Tumor Cells
We recently reported that colon tumor cells stimulate macrophages to release IL-1beta, which in turn inactivates GSK3beta and enhances Wnt signaling in colon cancer cells, generating a self-amplifying loop that promotes the growth of tumor cells.Here we describe that macrophages protect HCT116 and Hke-3 colon cancer cells from TRAIL-induced apoptosis. Inactivation of IL-1beta by neutralizing IL-1beta antibody, or silencing of IL-1beta in macrophages inhibited their ability to counter TRAIL-induced apoptosis. Accordingly, IL-1beta was sufficient to inhibit TRAIL-induced apoptosis. TRAIL-induced collapse of the mitochondrial membrane potential (Delta psi) and activation of caspases were prevented by macrophages or by recombinant IL-1beta. Pharmacological inhibition of IL-1beta release from macrophages by vitamin D(3), a potent chemopreventive agent for colorectal cancer, restored the ability of TRAIL to induce apoptosis of tumor cells cultured with macrophages. Macrophages and IL-1beta failed to inhibit TRAIL-induced apoptosis in HCT116 cells expressing dnIkappaB, dnAKT or dnTCF4, confirming that they oppose TRAIL-induced cell death through induction of Wnt signaling in tumor cells. We showed that macrophages and IL-1beta stabilized Snail in tumor cells in an NF-kappaB/Wnt dependent manner and that Snail deficient tumor cells were not protected from TRAIL-induced apoptosis by macrophages or by IL-1beta, demonstrating a crucial role of Snail in the resistance of tumor cells to TRAIL.We have identified a positive feedback loop between tumor cells and macrophages that propagates the growth and promotes the survival of colon cancer cells: tumor cells stimulate macrophages to secrete IL-1beta, which in turn, promotes Wnt signaling and stabilizes Snail in tumor cells, conferring resistance to TRAIL. Vitamin D(3) halts this amplifying loop by interfering with the release of IL-1beta from macrophages. Accordingly, vitamin D(3) sensitizes tumor cells to TRAIL-induced apoptosis, suggesting that the therapeutic efficacy of TRAIL could be augmented by this readily available chemopreventive agent
Prediction and Testing of Biological Networks Underlying Intestinal Cancer
Colorectal cancer progresses through an accumulation of somatic mutations, some of which reside in so-called “driver” genes that provide a growth advantage to the tumor. To identify points of intersection between driver gene pathways, we implemented a network analysis framework using protein interactions to predict likely connections – both precedented and novel – between key driver genes in cancer. We applied the framework to find significant connections between two genes, Apc and Cdkn1a (p21), known to be synergistic in tumorigenesis in mouse models. We then assessed the functional coherence of the resulting Apc-Cdkn1a network by engineering in vivo single node perturbations of the network: mouse models mutated individually at Apc (Apc1638N+/−) or Cdkn1a (Cdkn1a−/−), followed by measurements of protein and gene expression changes in intestinal epithelial tissue. We hypothesized that if the predicted network is biologically coherent (functional), then the predicted nodes should associate more specifically with dysregulated genes and proteins than stochastically selected genes and proteins. The predicted Apc-Cdkn1a network was significantly perturbed at the mRNA-level by both single gene knockouts, and the predictions were also strongly supported based on physical proximity and mRNA coexpression of proteomic targets. These results support the functional coherence of the proposed Apc-Cdkn1a network and also demonstrate how network-based predictions can be statistically tested using high-throughput biological data
- …