21,048 research outputs found

    Stabilization of the pendulum on a rotor arm by the method of controlled Lagrangians

    Get PDF
    Obtains feedback stabilization of an inverted pendulum on a rotor arm by the “method of controlled Lagrangians”. This approach involves modifying the Lagrangian for the uncontrolled system so that the Euler-Lagrange equations derived from the modified or “controlled” Lagrangian describe the closed-loop system. For the closed-loop equations to be consistent with available control inputs, the modifications to the Lagrangian must satisfy “matching” conditions. The pendulum on a rotor arm requires an interesting generalization of our earlier approach which was used for systems such as a pendulum on a cart

    Matching and stabilization by the method of controlled Lagrangians

    Get PDF
    We describe a class of mechanical systems for which the “method of controlled Lagrangians” provides a family of control laws that stabilize an unstable (relative) equilibrium. The controlled Lagrangian approach involves making modifications to the Lagrangian for the uncontrolled system such that the Euler-Lagrange equations derived from the modified or “controlled” Lagrangian describe the closed-loop system. For the closed-loop equations to be consistent with available control inputs, the modifications to the Lagrangian must satisfy “matching” conditions. Our matching and stabilizability conditions are constructive; they provide the form of the controlled Lagrangian, the control law and, in some cases, conditions on the control gain(s) to ensure stability. The method is applied to stabilization of an inverted spherical pendulum on a cart and to stabilization of steady rotation of a rigid spacecraft about its unstable intermediate axis using an internal rotor

    Stabilization of mechanical systems using controlled Lagrangians

    Get PDF
    We propose an algorithmic approach to stabilization of Lagrangian systems. The first step involves making admissible modifications to the Lagrangian for the uncontrolled system, thereby constructing what we call the controlled Lagrangian. The Euler-Lagrange equations derived from the controlled Lagrangian describe the closed-loop system where new terms are identified with control forces. Since the controlled system is Lagrangian by construction, energy methods can be used to find control gains that yield closed-loop stability. The procedure is demonstrated for the problem of stabilization of an inverted pendulum on a cart and for the problem of stabilization of rotation of a rigid spacecraft about its unstable intermediate axis using a single internal rotor. Similar results hold for the dynamics of an underwater vehicle

    Controlled Lagrangians and the stabilization of mechanical systems. I. The first matching theorem

    Get PDF
    We develop a method for the stabilization of mechanical systems with symmetry based on the technique of controlled Lagrangians. The procedure involves making structured modifications to the Lagrangian for the uncontrolled system, thereby constructing the controlled Lagrangian. The Euler-Lagrange equations derived from the controlled Lagrangian describe the closed-loop system, where new terms in these equations are identified with control forces. Since the controlled system is Lagrangian by construction, energy methods can be used to find control gains that yield closed-loop stability. We use kinetic shaping to preserve symmetry and only stabilize systems module the symmetry group. The procedure is demonstrated for several underactuated balance problems, including the stabilization of an inverted planar pendulum on a cart moving on a line and an inverted spherical pendulum on a cart moving in the plane

    Physical Dissipation and the Method of Controlled Lagrangians

    Get PDF
    We describe the effect of physical dissipation on stability of equilibria which have been stabilized, in the absence of damping, using the method of controlled Lagrangians. This method applies to a class of underactuated mechanical systems including “balance” systems such as the pendulum on a cart. Since the method involves modifying a system’s kinetic energy metric through feedback, the effect of dissipation is obscured. In particular, it is not generally true that damping makes a feedback-stabilized equilibrium asymptotically stable. Damping in the unactuated directions does tend to enhance stability, however damping in the controlled directions must be “reversed” through feedback. In this paper, we suggest a choice of feedback dissipation to locally exponentially stabilize a class of controlled Lagrangian systems

    Dissipation and Controlled Euler-Poincaré Systems

    Get PDF
    The method of controlled Lagrangians is a technique for stabilizing underactuated mechanical systems which involves modifying a system’s energy and dynamic structure through feedback. These modifications can obscure the effect of physical dissipation in the closed-loop. For example, generic damping can destabilize an equilibrium which is closed-loop stable for a conservative system model. In this paper, we consider the effect of damping on Euler-Poincaré (special reduced Lagrangian) systems which have been stabilized about an equilibrium using the method of controlled Lagrangians. We describe a choice of feed-back dissipation which asymptotically stabilizes a sub-class of controlled Euler-Poincaré systems subject to physical damping. As an example, we consider intermediate axis rotation of a damped rigid body with a single internal rotor

    Matching and stabilization of the unicycle with rider

    Get PDF
    In this paper we apply matching techniques for controlled Lagrangians to the stabilization problem of a nonholonomic system consisting of a unicycle with rider. We show how generalized matching results may be applied to the Routhian associated with this nonholonomic system

    Asymptotic stabilization of Euler-Poincaré mechanical systems

    Get PDF
    Stabilization of mechanical control systems by the method of controlled Lagrangians and matching is used to analyze asymptotic stabilization of systems whose underlying dynamics are governed by the Euler-Poincar´e equations. In particular, we analyze asymptotic stabilization of a satellite

    STS-36 Space Shuttle mission report

    Get PDF
    The STS-36 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem activities on this thirty-fourth flight of the Space Shuttle and the sixth flight of the OV-104 Orbiter vehicle, Atlantis. In addition to the Atlantis vehicle, the flight vehicle consisted of an External Tank (ET) (designated as ET-33/LWT-26), three Space Shuttle main engines (SSME's) (serial numbers 2019, 2030, and 2029), and two Solid Rocket Boosters (SRB's) (designated as BI-036). The STS-36 mission was a classified Department of Defense mission, and as such, the classified portions of the mission are not discussed. The unclassified sequence of events for this mission is shown in tabular form. Summarized are the significant problems that occurred in the Orbiter subsystems during the mission. The official problem tracking list is presented. In addition, each of the Orbiter problems is cited in the subsystem discussion
    corecore