13 research outputs found

    Collaborative Caring: Stories and Reflections on Teamwork in Health Care

    Get PDF
    [Excerpt] There are many theoretical and conceptual books and countless articles that have explored issues of teamwork in general and teamwork in health care in particular. The editors, and many of the authors in this book, have read most, and have even written some of them. To tackle the issue of teamwork, we have, however, taken a different approach. Rather than write a theoretical book about what teamwork is, what it is not, where it exists in health care, what barriers prevent its implementation and how they can be removed, we have chosen instead to address these questions through narratives and reflections that vividly describe good teamwork as well as problems in creating, leading, and working on genuine teams. What we believe is too often lacking in the literature is a clear and compelling picture of what teamwork looks like on the ground, in the institutions where health care work is delivered and where teams play well, or don\u27t play well, on a daily basis. The question we ask here is thus: What is the state of play in most health care institutions? To describe the state of play, we have asked clinicians to write what we think of as where the rubber hits the road stories or reflections about the nature of teamwork in their own particular work setting. To gather these stories, we talked to many people in different health care disciplines. In the invitation for submissions we wrote the following: We are seeking short, concise narratives that describe a concrete example in which you personally have been involved. The idea here is not to focus so much on the individual doctor-patient, nurse-patient, therapist-patient communication but the teamwork that was involved in ensuring that the standard of care was met or exceeded. If the patient or family was involved, so much the better. Stories can deal with interprofessional or intraprofessional teamwork. On balance, we would prefer to have more stories about interprofessional or occupational teamwork. Nonetheless, we recognize that interprofessional work depends on the ability to create teamwork within an occupation or profession. Stories involving support staff, such as housekeepers who spoke up about a patient safety issue, are definitely within the purview of this book. We would also welcome personal reflections that would enhance our understanding of either how to produce genuine teamwork or the obstacles that stand in its way

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Subgroup-specific structural variation across 1,000 medulloblastoma genomes.

    Get PDF
    Medulloblastoma, the most common malignant paediatric brain tumour, is currently treated with nonspecific cytotoxic therapies including surgery, whole-brain radiation, and aggressive chemotherapy. As medulloblastoma exhibits marked intertumoural heterogeneity, with at least four distinct molecular variants, previous attempts to identify targets for therapy have been underpowered because of small samples sizes. Here we report somatic copy number aberrations (SCNAs) in 1,087 unique medulloblastomas. SCNAs are common in medulloblastoma, and are predominantly subgroup-enriched. The most common region of focal copy number gain is a tandem duplication of SNCAIP, a gene associated with Parkinson's disease, which is exquisitely restricted to Group 4α. Recurrent translocations of PVT1, including PVT1-MYC and PVT1-NDRG1, that arise through chromothripsis are restricted to Group 3. Numerous targetable SCNAs, including recurrent events targeting TGF-β signalling in Group 3, and NF-κB signalling in Group 4, suggest future avenues for rational, targeted therapy

    Unlocking the origins and biology of domestic animals using ancient DNA and paleogenomics

    No full text

    Description and performance of track and primary-vertex reconstruction with the CMS tracker

    No full text

    Description and performance of track and primary-vertex reconstruction with the CMS tracker

    No full text
    A description is provided of the software algorithms developed for the CMS tracker both for reconstructing charged-particle trajectories in proton-proton interactions and for using the resulting tracks to estimate the positions of the LHC luminous region and individual primary-interaction vertices. Despite the very hostile environment at the LHC, the performance obtained with these algorithms is found to be excellent. For tbar t events under typical 2011 pileup conditions, the average track-reconstruction efficiency for promptly-produced charged particles with transverse momenta of p(T) > 0.9GeV is 94% for pseudorapidities of |η| < 0.9 and 85% for 0.9 < |η| < 2.5. The inefficiency is caused mainly by hadrons that undergo nuclear interactions in the tracker material. For isolated muons, the corresponding efficiencies are essentially 100%. For isolated muons of p(T) = 100GeV emitted at |η| < 1.4, the resolutions are approximately 2.8% in p(T), and respectively, 10μm and 30μm in the transverse and longitudinal impact parameters. The position resolution achieved for reconstructed primary vertices that correspond to interesting pp collisions is 10–12μm in each of the three spatial dimensions. The tracking and vertexing software is fast and flexible, and easily adaptable to other functions, such as fast tracking for the trigger, or dedicated tracking for electrons that takes into account bremsstrahlung

    Precision measurement of the structure of the CMS inner tracking system using nuclear interactions

    No full text

    Precision measurement of the structure of the CMS inner tracking system using nuclear interactions

    No full text

    Precision measurement of the structure of the CMS inner tracking system using nuclear interactions

    No full text

    Precision measurement of the structure of the CMS inner tracking system using nuclear interactions

    No full text
    The structure of the CMS inner tracking system has been studied using nuclear interactions of hadrons striking its material. Data from proton-proton collisions at a center-of-mass energy of 13 TeV recorded in 2015 at the LHC are used to reconstruct millions of secondary vertices from these nuclear interactions. Precise positions of the beam pipe and the inner tracking system elements, such as the pixel detector support tube, and barrel pixel detector inner shield and support rails, are determined using these vertices. These measurements are important for detector simulations, detector upgrades, and to identify any changes in the positions of inactive elements
    corecore