16,238 research outputs found
Alignment apparatus using a laser having a gravitationally sensitive cavity reflector
A description is given of a device for determining a true gravitational vertical. The apparatus is composed of a vertically disposed laser with a gravitationally sensitive lower regeneration reflector. The reflector enables an output beam to be developed only when the optical axis of the laser is disposed normal to the gravitationally sensitive reflective surface. In an alternative embodiment, the devices is combined with a servo system to provide a gravitationally stabilized horizontal platform
Gravitational waves from binary systems in circular orbits: Convergence of a dressed multipole truncation
The gravitational radiation originating from a compact binary system in
circular orbit is usually expressed as an infinite sum over radiative multipole
moments. In a slow-motion approximation, each multipole moment is then
expressed as a post-Newtonian expansion in powers of v/c, the ratio of the
orbital velocity to the speed of light. The bare multipole truncation of the
radiation consists in keeping only the leading-order term in the post-Newtonian
expansion of each moment, but summing over all the multipole moments. In the
case of binary systems with small mass ratios, the bare multipole series was
shown in a previous paper to converge for all values v/c < 2/e, where e is the
base of natural logarithms. In this paper, we extend the analysis to a dressed
multipole truncation of the radiation, in which the leading-order moments are
corrected with terms of relative order (v/c)^2 and (v/c)^3. We find that the
dressed multipole series converges also for all values v/c < 2/e, and that it
coincides (within 1%) with the numerically ``exact'' results for v/c < 0.2.Comment: 9 pages, ReVTeX, 1 postscript figur
Computer recommendations for an automatic approach and landing system for V/STOL aircraft. Volume 1 - Computer recommendations
Evaluation of digital computer for V/STOL aircraft automatic approach and landing syste
The Number of States of Two Dimensional Critical String Theory
We discuss string theory vacua which have the wrong number of spacetime
dimensions, and give a crude argument that vacua with more than four large
dimensions are improbable. We then turn to two dimensional vacua, which naively
appear to violate Bekenstein's entropy principle. A classical analysis shows
that the naive perturbative counting of states is unjustified. All excited
states of the system have strong coupling singularities which prevent us from
concluding that they really exist. A speculative interpretation of the
classical solutions suggests only a finite number of states will be found in
regions bounded by a finite area. We also argue that the vacuum degeneracy of
two dimensional classical string theory is removed in quantum mechanics. The
system appears to be in a Kosterlitz-Thouless phase. This leads to the
conclusion that it is also improbable to have only two large spacetime
dimensions in string theory. However, we note that, unlike our argument for
high dimensions, our conclusions about the ground state have neglected two
dimensional quantum gravitational effects, and are at best incomplete.Comment: 12 pages, harvma
Gaussian-Charge Polarizable Interaction Potential for Carbon Dioxide
A number of simple pair interaction potentials of the carbon dioxide molecule
are investigated and found to underestimate the magnitude of the second virial
coefficient in the temperature interval 220 K to 448 K by up to 20%. Also the
third virial coefficient is underestimated by these models. A rigid,
polarizable, three-site interaction potential reproduces the experimental
second and third virial coefficients to within a few percent. It is based on
the modified Buckingham exp-6 potential, an anisotropic Axilrod-Teller
correction and Gaussian charge densities on the atomic sites with an inducible
dipole at the center of mass. The electric quadrupole moment, polarizability
and bond distances are set to equal experiment. Density of the fluid at 200 and
800 bars pressure is reproduced to within some percent of observation over the
temperature range 250 K to 310 K. The dimer structure is in passable agreement
with electronically resolved quantum-mechanical calculations in the literature,
as are those of the monohydrated monomer and dimer complexes using the
polarizable GCPM water potential. Qualitative agreement with experiment is also
obtained, when quantum corrections are included, for the relative stability of
the trimer conformations, which is not the case for the pair potentials.Comment: Error in the long-range correction fixed and three-body dispersion
introduced. 32 pages (incl. title page), 7 figures, 9 tables, double-space
- …