72 research outputs found

    Hybrid Simulation of Solar-Wind-Like Turbulence

    Get PDF
    We present 2.5D hybrid simulations of the spectral and thermodynamic evolution of an initial state of magnetic field and plasma variables that in many ways represents solar wind fluctuations. In accordance with Helios near-Sun high-speed stream observations, we start with Alfvnic fluctuations along a mean magnetic field in which the fluctuations in the magnitude of the magnetic field are minimized. Since fluctuations in the radial flow speed are the dominant free energy in the observed fluctuations, we include a field-aligned v(k) with an k(exp 1) spectrum of velocity fluctuations to drive the turbulent evolution. The flow rapidly distorts the Alfvnic fluctuations, yielding spectra (determined by spacecraft-like cuts) transverse to the field that become comparable to the k fluctuations, as in spacecraft observations. The initial near constancy of the magnetic field is lost during the evolution; we show this also takes place observationally. We find some evolution in the anisotropy of the thermal fluctuations, consistent with expectations based on Helios data. We present 2D spectra of the fluctuations, showing the evolution of the power spectrum and cross-helicity. Despite simplifying assumptions, many aspects of simulations and observations agree. The greatly faster evolution in the simulations is at least in part due to the small scales being simulated, but also to the non-equilibrium initial conditions and the relatively low overall Alfvnicity of the initial fluctuations

    Three dimensional MHD Modeling of Vertical Kink Oscillations in an Active Region Plasma Curtain

    Full text link
    Observations on 2011 August 9 of an X6.9-class flare in active region (AR) 11263 by the Atmospheric Imaging Assembly (AIA) on-board the Solar Dynamics Observatory (SDO), were followed by a rare detection of vertical kink oscillations in a large-scale coronal active region plasma curtain in EUV coronal lines. The damped oscillations with periods in the range 8.8-14.9 min were detected and analyzed recently. Our aim is to study the generation and propagation of the MHD oscillations in the plasma curtain taking into account realistic 3D magnetic and density structure of the curtain. We also aim at testing and improving coronal seismology for more accurate determination of the magnetic field than with standard method. We use the observed morphological and dynamical conditions, as well as plasma properties of the coronal curtain based on Differential Emission Measure (DEM) analysis to initialize a 3D MHD model of its vertical and transverse oscillations by implementing the impulsively excited velocity pulse mimicking the flare generated nonlinear fast magnetosonic propagating disturbance interacting with the curtain obliquely. The model is simplified by utilizing initial dipole magnetic field, isothermal energy equation, and gravitationally stratified density guided by observational parameters. Using the 3D MHD model, we are able to reproduce the details of the vertical oscillations and study the process of their excitation by nonlinear fast magnetosonic pulse, propagation, and damping, finding agreement with the observations. We estimate the accuracy of simplified slab-based coronal seismology by comparing the determined magnetic field strength to actual values from the 3D MHD modeling results and demonstrate the importance of taking into account more realistic magnetic geometry and density for improving coronal seismology

    Winds from Luminous Late-Type Stars: II. Broadband Frequency Distribution of Alfv\'en Waves

    Get PDF
    We present the numerical simulations of winds from evolved giant stars using a fully non-linear, time dependent 2.5-dimensional magnetohydrodynamic (MHD) code. This study extends our previous fully non-linear MHD wind simulations to include a broadband frequency spectrum of Alfv\'en waves that drive winds from red giant stars. We calculated four Alfv\'en wind models that cover the whole range of Alfv\'en wave frequency spectrum to characterize the role of freely propagated and reflected Alfv\'en waves in the gravitationally stratified atmosphere of a late-type giant star. Our simulations demonstrate that, unlike linear Alfv\'en wave-driven wind models, a stellar wind model based on plasma acceleration due to broadband non-linear Alfv\'en waves, can consistently reproduce the wide range of observed radial velocity profiles of the winds, their terminal velocities and the observed mass loss rates. Comparison of the calculated mass loss rates with the empirically determined mass loss rate for alpha Tau suggests an anisotropic and time-dependent nature of stellar winds from evolved giants.Comment: accepted by Ap

    Slow magnetosonic waves and fast flows in active region loops

    Get PDF
    Recent EUV spectroscopic observations indicate that slow magnetosonic waves are present in active region (AR) loops. Some of the spectral data were also interpreted as evidence of fast (~100-300 km/s) quasi-periodic flows. We have performed three-dimensional magnetohydrodynamic (3D MHD) modeling of a bipolar AR that contains impulsively generated waves and flows in coronal loops. The model AR is initiated with a dipole magnetic field and gravitationally stratified density, with an upflow driven steadily or periodically in localized regions at the footpoints of magnetic loops. The resulting flows along the magnetic field lines of the AR produce higher density loops compared to the surrounding plasma by injection of material into the flux-tubes and the establishment of siphon flow. We find that the impulsive onset of flows with subsonic speeds result in the excitation of damped slow magnetosonic waves that propagate along the loops and coupled nonlinearly driven fast mode waves. The phase speed of the slow magnetosonic waves is close to the coronal sound speed. When the amplitude of the driving pulses is increased we find that slow shock-like wave trains are produced. When the upflows are driven periodically, undamped oscillations are produced with periods determined by the periodicity of the upflows. Based on the results of the 3D MHD model we suggest that the observed slow magnetosonic waves and persistent upflows may be produced by the same impulsive events at the bases of ARs.Comment: Accepted for publication in The Astrophysical Journa
    corecore