2 research outputs found

    Multivariate classification techniques and mass spectrometry as a tool in the screening of patients with fibromyalgia

    Get PDF
    Abstract: Fibromyalgia is a rheumatological disorder that causes chronic pain and other symptomatic conditions such as depression and anxiety. Despite its relevance, the disease still presents a complex diagnosis where the doctor needs to have a correct clinical interpretation of the symptoms. In this context, it is valid to study tools that assist in the screening of this disease, using chemical work techniques such as mass spectroscopy. In this study, an analytical method is proposed to detect individuals with fibromyalgia (n = 20, 10 control samples and 10 samples with fibromyalgia) from blood plasma samples analyzed by mass spectrometry with paper spray ionization and subsequent multivariate classification of the spectral data (unsupervised and supervised), in addition to the treatment of selected variables with possible associations with metabolomics. Exploratory analysis with principal component analysis (PCA) and supervised analysis with successive projections algorithm with linear discriminant analysis (SPA-LDA) showed satisfactory results with 100% accuracy for sample prediction in both groups. This demonstrates that this combination of techniques can be used as a simple, reliable and fast tool in the development of clinical diagnosis of Fibromyalgia

    Paper Spray Ionization Mass Spectrometry as a Potential Tool for Early Diagnosis of Cervical Cancer

    Get PDF
    Squamous intraepithelial lesion is an abnormal growth of epithelial cells on the surface of the cervix that may lead to cervical cancer. Analytical protocols for the determination of squamous intraepithelial lesions are in high demand, since cervical cancer is the fourth most diagnosed cancer among women in the world. Here, paper spray ionization mass spectrometry (PSI-MS) is used to distinguish between healthy (negative for intraepithelial lesion or malignancy) and diseased (high-grade squamous intraepithelial lesion) blood plasmas. A total of 86 blood samples of different women (49 healthy samples, 37 diseased samples) were collected, and the plasmas were prepared. Then, 10 μL of each plasma sample was deposited onto triangular papers for PSI-MS analysis. No additional step of sample preparation was necessary. The interval-successive projection algorithm linear discriminant analysis (iSPA-LDA) was applied to the PSI mass spectra, showing six ions (mostly phospholipids) that were predictive of healthy and diseased plasmas. Values of 77% accuracy, 86% sensitivity, 80% positive predictive value (PPV), and 75% negative predictive value (NPV) were achieved. This study provides evidence that PSI-MS may potentially be used as a fast and simple analytical technique for the early diagnosis of cervical cancer
    corecore