23 research outputs found

    Chromosome Congression by Kinesin-5 Motor-Mediated Disassembly of Longer Kinetochore Microtubules

    Get PDF
    During mitosis, sister chromatids congress to the spindle equator and are subsequently segregated via attachment to dynamic kinetochore microtubule (kMT) plus-ends. A major question is how kMT plus-end assembly is spatially regulated to achieve chromosome congression. Here we find in budding yeast that the widely-conserved kinesin-5 sliding motor proteins, Cin8p and Kip1p, mediate chromosome congression by suppressing kMT plus-end assembly of longer kMTs. Of the two, Cin8p is the major effector and its activity requires a functional motor domain. In contrast, the depolymerizing kinesin-8 motor Kip3p plays a minor role in spatial regulation of yeast kMT assembly. Our analysis identified a model where kinesin-5 motors bind to kMTs, move to kMT plus ends, and upon arrival at a growing plus-end promote net kMT plus-end disassembly. In conclusion, we find that length-dependent control of net kMT assembly by kinesin-5 motors yields a simple and stable self-organizing mechanism for chromosome congression

    Karyotype, Sex Determination, and Meiotic Chromosome Behavior in Two Pholcid (Araneomorphae, Pholcidae) Spiders: Implications for Karyotype Evolution

    Get PDF
    There are 1,111 species of pholcid spiders, of which less than 2% have published karyotypes. Our aim in this study was to determine the karyotypes and sex determination mechanisms of two species of pholcids: Physocyclus mexicanus (Banks, 1898) and Holocnemus pluchei (Scopoli, 1763), and to observe sex chromosome behavior during meiosis. We constructed karyotypes for P. mexicanus and H. pluchei using information from both living and fixed cells. We found that P. mexicanus has a chromosome number of 2n = 15 in males and 2n = 16 in females with X0-XX sex determination, like other members of the genus Physocyclus. H. pluchei has a chromosome number of 2n = 28 in males and 2n = 28 in females with XY-XX sex determination, which is substantially different from its closest relatives. These data contribute to our knowledge of the evolution of this large and geographically ubiquitous family, and are the first evidence of XY-XX sex determination in pholcids

    Chromosome Interaction over a Distance in Meiosis

    No full text
    The challenge of cell division is to distribute partner chromosomes (pairs of homologues, pairs of sex chromosomes or pairs of sister chromatids) correctly, one into each daughter cell. In the \u27standard\u27 meiosis, this problem is solved by linking partners together via a chiasma and/or sister chromatid cohesion, and then separating the linked partners from one another in anaphase; thus, the partners are kept track of, and correctly distributed. Many organisms, however, properly separate chromosomes in the absence of any obvious physical connection, and movements of unconnected partner chromosomes are coordinated at a distance. Meiotic distance interactions happen in many different ways and in different types of organisms. In this review, we discuss several different known types of distance segregation and propose possible explanations for non-random segregation of distance-segregating chromosomes

    A review of tethers: elastic connections between separating partner chromosomes in anaphase

    No full text
    Recent work has demonstrated the existence of elastic connections, or tethers, between the telomeres of separating partner chromosomes in anaphase. These tethers oppose the poleward spindle forces in anaphase. Functional evidence for tethers has been found in a wide range of animal taxa, suggesting that they might be present in all dividing cells. An examination of the literature on cell division from the nineteenth century to the present reveals that connections between separating partner chromosomes in anaphase have been described in some of the earliest observations of cell division. Here, we review what is currently known about connections between separating partner chromosomes in anaphase, and we speculate on possible functions of tethers, and on what they are made of and how one might determine their composition

    Chromosome Interaction over a Distance in Meiosis

    No full text
    The challenge of cell division is to distribute partner chromosomes (pairs of homologues, pairs of sex chromosomes or pairs of sister chromatids) correctly, one into each daughter cell. In the \u27standard\u27 meiosis, this problem is solved by linking partners together via a chiasma and/or sister chromatid cohesion, and then separating the linked partners from one another in anaphase; thus, the partners are kept track of, and correctly distributed. Many organisms, however, properly separate chromosomes in the absence of any obvious physical connection, and movements of unconnected partner chromosomes are coordinated at a distance. Meiotic distance interactions happen in many different ways and in different types of organisms. In this review, we discuss several different known types of distance segregation and propose possible explanations for non-random segregation of distance-segregating chromosomes

    The Pre-Metaphase Stretch: a Re-Examination

    No full text
    Pre-metaphase stretch is a term first coined by the preeminent cell biologist Sally Hughes-Schrader in 1950 to describe an elongation of prometaphase chromosomes observed in the primary spermatocytes of phasmid insects and praying mantids. Research from many groups since Hughes- Schrader’s initial observation has revealed reasons for both how and why chromosomes might elongate prior to metaphase. In this review, we describe Hughes-Schrader’s initial findings and discuss how recent work illuminates and provides some mechanistic explanation for this long-ago observed phenomenon

    Back to the Roots: Segregation of Univalent Sex Chromosomes in Meiosis.

    No full text
    In males of many taxa, univalent sex chromosomes normally segregate during the first meiotic division, and analysis of sex chromosome segregation was foundational for the chromosome theory of inheritance. Correct segregation of single or multiple univalent sex chromosomes occurs in a cellular environment where every other chromosome is a bivalent that is being partitioned into homologous chromosomes at anaphase I. The mechanics of univalent chromosome segregation vary among animal taxa. In some, univalents establish syntelic attachment of sister kinetochores to the spindle. In others, amphitelic attachment is established. Here, we review how this problem of segregation of unpaired chromosomes is solved in different animal systems. In addition, we give a short outlook of how mechanistic insights into this process could be gained by explicitly studying model organisms, such as Caenorhabditis elegans

    Holocentric chromosomes: convergent evolution, meiotic adaptations, and genomic analysis

    No full text
    In most eukaryotes, the kinetochore protein complex assembles at a single locus termed the centromere to attach chromosomes to spindle microtubules. Holocentric chromosomes have the unusual property of attaching to spindle microtubules along their entire length. Our mechanistic understanding of holocentric chromosome function is derived largely from studies in the nematode Caenorhabditis elegans, but holocentric chromosomes are found over a broad range of animal and plant species. In this review, we describe how holocentricity may be identified through cytological and molecular methods. By surveying the diversity of organisms with holocentric chromosomes, we estimate that the trait has arisen at least 13 independent times (four times in plants and at least nine times in animals). Holocentric chromosomes have inherent problems in meiosis because bivalents can attach to spindles in a random fashion. Interestingly, there are several solutions that have evolved to allow accurate meiotic segregation of holocentric chromosomes. Lastly, we describe how extensive genome sequencing and experiments in nonmodel organisms may allow holocentric chromosomes to shed light on general principles of chromosome segregation
    corecore