12,462 research outputs found

    Time Series Analysis in Flight Flutter Testing at the Air Force Flight Test Center: Concepts and Results

    Get PDF
    The Air Force Flight Test Center (AFFTC) flight flutter facility is described. Concepts of using a minicomputer-based time series analyzer and a modal analysis software package for flight flutter testing are examined. The results of several evaluations of the software package are given. The reasons for employing a minimum phase concept in analyzing response only signals are discussed. The use of a Laplace algorithm is shown to be effective for the modal analysis of time histories in flutter testing. Sample results from models and flight tests are provided. The limitations inherent in time series analysis methods are discussed, and the need for effective noise reduction techniques is noted. The use of digital time series analysis techniques in flutter testing is shown to be fast, accurate, and cost effective

    EVS: Head-up or Head Down? Evaluation of Crew Procedure and Human Factors for Enhanced Vision Systems

    Get PDF
    Feasibility of an EVS head-down procedure is examined that may provide the same operational benefits under low visibility as the FAA rule on Enhanced Flight Visibility that requires the use of a head-up display (HUD). The main element of the described EVS head-down procedure is the crew procedure within cockpit for flying the approach. The task sharing between Pilot-Flying and Pilot-Not-Flying is arranged such that multiple head-up/head-down transitions can be avoided. The pilot-flying is using the head-down display for acquisition of the necessary visual cues in the EVS image. The pilot-not-flying is monitoring the instruments and looking for the outside visual cues

    Pulse shape simulation for segmented true-coaxial HPGe detectors

    Get PDF
    A new package to simulate the formation of electrical pulses in segmented true-coaxial high purity germanium detectors is presented. The computation of the electric field and weighting potentials inside the detector as well as of the trajectories of the charge carriers is described. In addition, the treatment of bandwidth limitations and noise are discussed. Comparison of simulated to measured pulses, obtained from an 18-fold segmented detector operated inside a cryogenic test facility, are presented.Comment: 20 pages, 16 figure

    Scaling Invariance in a Time-Dependent Elliptical Billiard

    Full text link
    We study some dynamical properties of a classical time-dependent elliptical billiard. We consider periodically moving boundary and collisions between the particle and the boundary are assumed to be elastic. Our results confirm that although the static elliptical billiard is an integrable system, after to introduce time-dependent perturbation on the boundary the unlimited energy growth is observed. The behaviour of the average velocity is described using scaling arguments

    Requirements for contractility in disordered cytoskeletal bundles

    Full text link
    Actomyosin contractility is essential for biological force generation, and is well understood in highly organized structures such as striated muscle. Additionally, actomyosin bundles devoid of this organization are known to contract both in vivo and in vitro, which cannot be described by standard muscle models. To narrow down the search for possible contraction mechanisms in these systems, we investigate their microscopic symmetries. We show that contractile behavior requires non-identical motors that generate large enough forces to probe the nonlinear elastic behavior of F-actin. This suggests a role for filament buckling in the contraction of these bundles, consistent with recent experimental results on reconstituted actomyosin bundles.Comment: 10 pages, 6 figures; text shortene

    LpL^p-approximation of the integrated density of states for Schr\"odinger operators with finite local complexity

    Get PDF
    We study spectral properties of Schr\"odinger operators on \RR^d. The electromagnetic potential is assumed to be determined locally by a colouring of the lattice points in \ZZ^d, with the property that frequencies of finite patterns are well defined. We prove that the integrated density of states (spectral distribution function) is approximated by its finite volume analogues, i.e.the normalised eigenvalue counting functions. The convergence holds in the space Lp(I)L^p(I) where II is any finite energy interval and 1≤p<∞1\leq p< \infty is arbitrary.Comment: 15 pages; v2 has minor fixe

    Contractile units in disordered actomyosin bundles arise from F-actin buckling

    Full text link
    Bundles of filaments and motors are central to contractility in cells. The classic example is striated muscle, where actomyosin contractility is mediated by highly organized sarcomeres which act as fundamental contractile units. However, many contractile bundles in vivo and in vitro lack sarcomeric organization. Here we propose a model for how contractility can arise in actomyosin bundles without sarcomeric organization and validate its predictions with experiments on a reconstituted system. In the model, internal stresses in frustrated arrangements of motors with diverse velocities cause filaments to buckle, leading to overall shortening. We describe the onset of buckling in the presence of stochastic actin-myosin detachment and predict that buckling-induced contraction occurs in an intermediate range of motor densities. We then calculate the size of the "contractile units" associated with this process. Consistent with these results, our reconstituted actomyosin bundles contract at relatively high motor density, and we observe buckling at the predicted length scale.Comment: 5 pages, 4 figures, Supporting text and movies attache
    • …
    corecore