34 research outputs found

    Static stretching does not alter pre and post-landing muscle activation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Static stretching may result in various strength and power deficiencies. Prior research has not determined, however, if static stretching causes a change in muscle activation during a functional task requiring dynamic stability. The purpose of this study was to determine if static stretching has an effect on mean pre and postlanding muscle (vastus medialis VM, vastus lateralis VL, medial hamstring MH, and biceps femoris BF) activity.</p> <p>Methods</p> <p>26 healthy, physically active subjects were recruited, from which 13 completed a 14-day static stretching regimen for the quadriceps and hamstrings. Using the data from the force plate and EMG readings, a mean of EMG amplitude was calculated for 150 msec before and after landing. Each trial was normalized to an isometric reference position. Means were calculated for the VM, VL, MH, and BF from 5 trials in each session. Measures were collected pre, immediately following the 1<sup>st </sup>stretching session, and following 2 weeks of stretching.</p> <p>Results</p> <p>A 14-day static stretching regimen resulted in no significant differences in pre or postlanding mean EMG amplitude during a drop landing either acutely or over a 14-day period.</p> <p>Conclusions</p> <p>Static stretching, done acutely or over a 14-day period does not result in measurable differences of mean EMG amplitude during a drop landing. Static stretching may not impede dynamic stability of joints about which stretched muscles cross.</p

    Victims or vectors : a survey of marine vertebrate zoonoses from coastal waters of the Northwest Atlantic

    Get PDF
    Author Posting. © Inter-Research, 2008. This article is posted here by permission of Inter-Research for personal use, not for redistribution. The definitive version was published in Diseases of Aquatic Organisms 81 (2008): 13-38, doi:10.3354/dao01936.Surveillance of zoonotic pathogens in marine birds and mammals in the Northwest Atlantic revealed a diversity of zoonotic agents. We found amplicons to sequences from Brucella spp., Leptospira spp., Giardia spp. and Cryptosporidium spp. in both marine mammals and birds. Avian influenza was detected in a harp seal and a herring gull. Routine aerobic and anaerobic culture showed a broad range of bacteria resistant to multiple antibiotics. Of 1460 isolates, 797 were tested for resistance, and 468 were resistant to one or more anti-microbials. 73% (341/468) were resistant to 1–4 drugs and 27% (128/468) resistant to 5–13 drugs. The high prevalence of resistance suggests that many of these isolates could have been acquired from medical and agricultural sources and inter-microbial gene transfer. Combining birds and mammals, 45% (63/141) of stranded and 8% (2/26) of by-caught animals in this study exhibited histopathological and/or gross pathological findings associated with the presence of these pathogens. Our findings indicate that marine mammals and birds in the Northwest Atlantic are reservoirs for potentially zoonotic pathogens, which they may transmit to beachgoers, fishermen and wildlife health personnel. Conversely, zoonotic pathogens found in marine vertebrates may have been acquired via contamination of coastal waters by sewage, run-off and agricultural and medical waste. In either case these animals are not limited by political boundaries and are therefore important indicators of regional and global ocean health.This paper is a result of research funded by the National Oceanic and Atmospheric Administration (NOAA) Coastal Ocean Program under award NA05NOS4781247, the NOAA John H. Prescott Program NA05NMF4391165 and NAO6NMF4390130, and the International Fund for Animal Welfare to the Woods Hole Oceanographic Institution. Support was also provided by awards NSF OCE-0430724 and NIEHS P50ES012742 to the Woods Hole Center for Ocean and Human Health
    corecore