94 research outputs found

    Dynamic fluorescence microscopy of cellular uptake of intercalating model drugs by ultrasound-activated microbubbles

    Get PDF
    The combination of ultrasound and microbubbles can facilitate cellular uptake of (model) drugs via transient permeabilization of the cell membrane. By using fluorescent molecules, this process can be studied conveniently with confocal fluorescence microscopy. This study aimed to investigate the relation between cellular uptake and fluorescence intensity increase of intercalating model drugs. SYTOX Green, an intercalating fluorescent dye that displays > 500-fold fluorescence enhancement upon binding to nucleic acids, was used as a model drug for ultrasound-induced cellular uptake. SYTOX Green uptake was monitored in high spatiotemporal resolution to qualitatively assess the relation between uptake and fluorescence intensity in individual cells. In addition, the kinetics of fluorescence enhancement were studied as a function of experimental parameters, in particular, laser duty cycle (DC), SYTOX Green concentration and cell line. Ultrasound-induced intracellular SYTOX Green uptake resulted in local fluorescence enhancement, spreading throughout the cell and ultimately accumulating in the nucleus during the 9-min acquisition. The temporal evolution of SYTOX Green fluorescence was substantially influenced by laser duty cycle: continuous laser (100 % DC) induced a 6.4-fold higher photobleaching compared to pulsed laser (3.3 % DC), thus overestimating the fluorescence kinetics. A positive correlation of fluorescence kinetics and SYTOX Green concentration was found, increasing from 0.6 x 10(-3) to 2.2 x 10(-3) s(-1) for 1 and 20 mu M, respectively. Finally, C6 cells displayed a 2.4-fold higher fluorescence rate constant than FaDu cells. These data show that the temporal behavior of intracellular SYTOX Green fluorescence enhancement depends substantially on nuclear accumulation and not just on cellular uptake. In addition, it is strongly influenced by the experimental conditions, such as the laser duty cycle, SYTOX Green concentration, and cell line

    Gold nanoparticles delivery in mammalian live cells: a critical review

    Get PDF
    Functional nanomaterials have recently attracted strong interest from the biology community, not only as potential drug delivery vehicles or diagnostic tools, but also as optical nanomaterials. This is illustrated by the explosion of publications in the field with more than 2,000 publications in the last 2 years (4,000 papers since 2000; from ISI Web of Knowledge, ‘nanoparticle and cell’ hit). Such a publication boom in this novel interdisciplinary field has resulted in papers of unequal standard, partly because it is challenging to assemble the required expertise in chemistry, physics, and biology in a single team. As an extreme example, several papers published in physical chemistry journals claim intracellular delivery of nanoparticles, but show pictures of cells that are, to the expert biologist, evidently dead (and therefore permeable). To attain proper cellular applications using nanomaterials, it is critical not only to achieve efficient delivery in healthy cells, but also to control the intracellular availability and the fate of the nanomaterial. This is still an open challenge that will only be met by innovative delivery methods combined with rigorous and quantitative characterization of the uptake and the fate of the nanoparticles. This review mainly focuses on gold nanoparticles and discusses the various approaches to nanoparticle delivery, including surface chemical modifications and several methods used to facilitate cellular uptake and endosomal escape. We will also review the main detection methods and how their optimum use can inform about intracellular localization, efficiency of delivery, and integrity of the surface capping

    Ultrasound-Responsive Cavitation Nuclei for Therapy and Drug Delivery

    Get PDF
    Therapeutic ultrasound strategies that harness the mechanical activity of cavitation nuclei for beneficial tissue bio-effects are actively under development. The mechanical oscillations of circulating microbubbles, the most widely investigated cavitation nuclei, which may also encapsulate or shield a therapeutic agent in the bloodstream, trigger and promote localized uptake. Oscillating microbubbles can create stresses either on nearby tissue or in surrounding fluid to enhance drug penetration and efficacy in the brain, spinal cord, vasculature, immune system, biofilm or tumors. This review summarizes recent investigations that have elucidated interactions of ultrasound and cavitation nuclei with cells, the treatment of tumors, immunotherapy, the blood–brain and blood–spinal cord barriers, sonothrombolysis, cardiovascular drug delivery and sonobactericide. In particular, an overview of salient ultrasound features, drug delivery vehicles, therapeutic transport routes and pre-clinical and clinical studies is provided. Successful implementation of ultrasound and cavitation nuclei-mediated drug delivery has the potential to change the way drugs are administered systemically, resulting in more effective therapeutics and less-invasive treatments

    Non-spherical oscillations drive the ultrasound-mediated release from targeted microbubbles

    Get PDF
    Ultrasound-driven microbubbles are attractive for a variety of applications in medicine, including real-time organ perfusion imaging and targeted molecular imaging. In ultrasound-mediated drug delivery, bubbles decorated with a functional payload become convenient transport vehicles and offer highly localized release. How to efficiently release and transport these nanomedicines to the target site remains unclear owing to the microscopic length scales and nanoseconds timescales of the process. Here, we show theoretically how non-spherical bubble oscillations lead first to lo

    Sonoprinting and the importance of microbubble loading for the ultrasound mediated cellular delivery of nanoparticles

    Get PDF
    In the last years, research on ultrasound mediated drug delivery using microbubbles is vastly expanding. While some groups simply mix drugs and microbubbles (co-administration), other researchers have a major interest in the potential of drug-loaded microbubbles. However, today, little is known on the pros and cons of these two strategies. In this study we evaluated the delivery of nanoparticles (polystyrene nanospheres and mRNA-lipoplexes) to cells in vitro , in case the nanoparticles were mixed with unloaded microbubbles versus loaded onto the microbubbles. Flow cytometry experiments demonstrated that unloaded microbubbles did not enhance the cellular delivery of the nanospheres and mRNA-lipoplexes.However, upon loading the nanoparticles onto the microbubbles, their delivery to cells substantially improved. Real-time swept field confocal microscopy imaging of the microbubbles and cells during ultrasound radiation revealed that nanoparticle-loaded microbubbles directly deposited the nanoparticles in patches onto the cell membrane, a process that we termed ‘sonoprinting’. This phenomenon resulted in the delivery of large amounts of nanoparticles to the cells and is suggested to be different from the creation of cell membrane pores and enhanced endocytosis, which have been reported before as mechanisms behind the improved delivery of drugs to cells by ultrasound
    corecore