28 research outputs found

    Space exploration by dendritic cells requires maintenance of myosin II activity by IP3 receptor 1

    Get PDF
    Dendritic cells (DCs) patrol the interstitial space of peripheral tissues. The mechanisms that regulate their migration in such constrained environment remain unknown. We here investigated the role of calcium in immature DCs migrating in confinement. We found that they displayed calcium oscillations that were independent of extracellular calcium and more frequently observed in DCs undergoing strong speed fluctuations. In these cells, calcium spikes were associated with fast motility phases. IP3 receptors (IP(3)Rs) channels, which allow calcium release from the endoplasmic reticulum, were identified as required for immature DCs to migrate at fast speed. The IP(3)R1 isoform was further shown to specifically regulate the locomotion persistence of immature DCs, that is, their capacity to maintain directional migration. This function of IP(3)R1 results from its ability to control the phosphorylation levels of myosin II regulatory light chain (MLC) and the back/front polarization of the motor protein. We propose that by upholding myosin II activity, constitutive calcium release from the ER through IP(3)R1 maintains DC polarity during migration in confinement, facilitating the exploration of their environment

    Cell migration and antigen capture are antagonistic processes coupled by myosin II in dendritic cells

    Get PDF
    The immune response relies on the migration of leukocytes and on their ability to stop in precise anatomical locations to fulfil their task. How leukocyte migration and function are coordinated is unknown. Here we show that in immature dendritic cells, which patrol their environment by engulfing extracellular material, cell migration and antigen capture are antagonistic. This antagonism results from transient enrichment of myosin IIA at the cell front, which disrupts the back-to-front gradient of the motor protein, slowing down locomotion but promoting antigen capture. We further highlight that myosin IIA enrichment at the cell front requires the MHC class II-associated invariant chain (Ii). Thus, by controlling myosin IIA localization, Ii imposes on dendritic cells an intermittent antigen capture behaviour that might facilitate environment patrolling. We propose that the requirement for myosin II in both cell migration and specific cell functions may provide a general mechanism for their coordination in time and space

    Actin Flows Mediate a Universal Coupling between Cell Speed and Cell Persistence

    Get PDF
    Cell movement has essential functions in development, immunity, and cancer. Various cell migration patterns have been reported, but no general rule has emerged so far. Here, we show on the basis of experimental data in vitro and in vivo that cell persistence, which quantifies the straightness of trajectories, is robustly coupled to cell migration speed. We suggest that this universal coupling constitutes a generic law of cell migration, which originates in the advection of polarity cues by an actin cytoskeleton undergoing flows at the cellular scale. Our analysis relies on a theoretical model that we validate by measuring the persistence of cells upon modulation of actin flow speeds and upon optogenetic manipulation of the binding of an actin regulator to actin filaments. Beyond the quantitative prediction of the coupling, the model yields a generic phase diagram of cellular trajectories, which recapitulates the full range of observed migration patterns

    Innate control of actin nucleation determines two distinct migration behaviours in dendritic cells

    Get PDF
    Dendritic cell (DC) migration in peripheral tissues serves two main functions: antigen sampling by immature DCs, and chemokine-guided migration towards lymphatic vessels (LVs) on maturation. These migratory events determine the efficiency of the adaptive immune response. Their regulation by the core cell locomotion machinery has not been determined. Here, we show that the migration of immature DCs depends on two main actin pools: a RhoA mDial-dependent actin pool located at their rear, which facilitates forward locomotion; and a Cdc42 Arp2/3-dependent actin pool present at their front, which limits migration but promotes antigen capture. Following TLR4 MyD88-induced maturation, Arp2/3-dependent actin enrichment at the cell front is markedly reduced. Consequently, mature DCs switch to a faster and more persistent mDial-dependent locomotion mode that facilitates chemotactic migration to LVs and lymph nodes. Thus, the differential use of actin-nucleating machineries optimizes the migration of immature and mature DCs according to their specific function

    The first World Cell Race

    Get PDF
    Motility is a common property of animal cells. Cell motility is required for embryogenesis [1], tissue morphogenesis [2] and the immune response [3] but is also involved in disease processes, such as metastasis of cancer cells [4]. Analysis of cell migration in native tissue in vivo has yet to be fully explored, but motility can be relatively easily studied in vitro in isolated cells. Recent evidence suggests that cells plated in vitro on thin lines of adhesive proteins printed onto culture dishes can recapitulate many features of in vivo migration on collagen fibers 5, 6. However, even with controlled in vitro measurements, the characteristics of motility are diverse and are dependent on the cell type, origin and external cues. One objective of the first World Cell Race was to perform a large-scale comparison of motility across many different adherent cell types under standardized conditions. To achieve a diverse selection, we enlisted the help of many international laboratories, who submitted cells for analysis. The large-scale analysis, made feasible by this competition-oriented collaboration, demonstrated that higher cell speed correlates with the persistence of movement in the same direction irrespective of cell origin

    Stoichiometry of HLA Class II-Invariant Chain Oligomers

    Get PDF
    BACKGROUND: The HLA gene complex encodes three class II isotypes, DR, DQ, and DP. HLA class II molecules are peptide receptors that present antigens for recognition by T lymphocytes. In antigen presenting cells, the assembly of matched α and β subunits to heterodimers is chaperoned by invariant chain (Ii). Ii forms a homotrimer with three binding sites for class II heterodimers. The current model of class II and Ii structure states that three αβ heterodimers bind to an Ii trimer. METHODOLOGY/PRINCIPAL FINDINGS: [corrected] We have now analyzed the composition and size of the complexes of class II and Ii using epitope tagged class II subunits and density gradient experiments. We show here that class II-Ii oligomers consist of one class II heterodimer associated with one Ii trimer, such that the DR, DQ and DP isotypes are contained within separate complexes with Ii. CONCLUSION/SIGNIFICANCE: We propose a structural model of the class II-Ii oligomer and speculate that the pentameric class II-Ii complex is bent towards the cell membrane, inhibiting the binding of additional class II heterodimers to Ii

    Functional proteomics of the active cysteine protease content in Drosophila S2 cells.

    No full text
    The fruit fly genome is characterized by an evolutionary expansion of proteases and immunity-related genes. In order to characterize the proteases that are active in a phagocytic Drosophila model cell line (S2 cells), we have applied a functional proteomics approach that allows simultaneous detection and identification of multiple protease species. DCG-04, a biotinylated, mechanism-based probe that covalently targets mammalian cysteine proteases of the papain family was found to detect Drosophila polypeptides in an activity-dependent manner. Chemical tagging combined with tandem mass spectrometry permitted retrieval and identification of these polypeptides. Among them was thiol-ester motif-containing protein (TEP) 4 which is involved in insect innate immunity and shares structural and functional similarities with the mammalian complement system factor C3 and the pan-protease inhibitor alpha2-macroglobulin. We also found four cysteine proteases with homologies to lysosomal cathepsin (CTS) L, K, B, and F, which have been implicated in mammalian adaptive immunity. The Drosophila CTS equivalents were most active at a pH of 4.5. This suggests that Drosophila CTS are, similar to their mammalian counterparts, predominantly active in lysosomal compartments. In support of this concept, we found CTS activity in phagosomes of Drosophila S2 cells. These results underscore the utility of activity profiling to address the functional role of insect proteases in immunity

    Invariant chain controls the activity of extracellular cathepsin L

    Get PDF
    Secretion of proteases is critical for degradation of the extracellular matrix during an inflammatory response. Cathepsin (Cat) S and L are the major elastinolytic cysteine proteases in mouse macrophages. A 65 amino acid segment of the p41 splice variant (p41(65aa)) of major histocompatibility complex class II-associated invariant chain (Ii) binds to the active site of CatL and permits the maintenance of a pool of mature enzyme in endosomal compartments of macro-phages and dendritic cells (DCs). Here we show that interaction of p41(65aa) with mature CatL allows extracellular accumulation of the active enzyme. We detected mature CatL as a complex with p41(65aa) in culture supernatants from antigen-presenting cells (APCs). Extracellular accumulation of mature CatL is up-regulated by inflammatory stimuli as observed in interferon (IFN)-gamma-treated macrophages and lipopolysaccharide (LPS)-activated DCs. Despite the neutral pH of the extracellular milieu, released CatL associated with p41(65aa) is catalytically active as demonstrated by active site labeling and elastin degradation assays. We propose that p41(65aa) stabilizes CatL in the extracellular environment and induces a local increase in the concentration of matrix-degrading enzymes during inflammation. Through its interaction with CatL, Ii may therefore control the migratory response of APCs and/or the recruitment of effectors of the inflammatory response

    Deterministic actin waves as generators of cell polarization cues

    No full text
    Dendritic cells "patrol" the human body to detect pathogens. In their search, dendritic cells perform a random walk by amoeboid migration. The efficiency of pathogen detection depends on the properties of the random walk. It is not known how the dendritic cells control these properties. Here, we quantify dendritic cell migration under well-defined 2-dimensional confinement and in a 3-dimensional collagen matrix through recording their long-term trajectories. We find 2 different migration states: persistent migration, during which the dendritic cells move along curved paths, and diffusive migration, which is characterized by successive sharp turns. These states exhibit differences in the actin distributions. Our theoretical and experimental analyses indicate that this kind of motion can be generated by spontaneous actin polymerization waves that contribute to dendritic cell polarization and migration. The relative distributions of persistent and diffusive migration can be changed by modification of the molecular actin filament nucleation and assembly rates. Thus, dendritic cells can control their migration patterns and adapt to specific environments. Our study offers an additional perspective on how dendritic cells tune their searches for pathogens
    corecore