156 research outputs found

    Bioequivalence of Oral Products and the Biopharmaceutics Classification System: Science, Regulation, and Public Policy

    Get PDF
    The demonstration of bioequivalence (BE) is an essential requirement for ensuring that patients receive a product that performs as indicated by the label. The BE standard for a particular product is set by its innovator, and this standard must subsequently be matched by generic drug products. The Biopharmaceutics Classification System (BCS) sets a scientific basis for an improved BE standard for immediate-release solid oral dosage forms. In this paper, we discuss BE and the BCS, as well as the issues that are currently relevant to BE as a pharmaceutical product standard

    Effect of simvastatin on bone markers in osteopenic women: a placebo-controlled, dose-ranging trial [ISRCTN85429598]

    Get PDF
    BACKGROUND: Hydroxymethylglutaryl coenzyme A reductase inhibitors increase new bone formation in vitro and in rodents. Results of epidemiologic analyses evaluating the association between use of these cholesterol-lowering drugs, bone mineral density and fracture have been mixed. METHODS: Women (n = 24) with osteopenia, assessed by broad band ultrasound attenuation, were randomized to simvastatin 20 mg, 40 mg or identical-appearing placebo for 12 weeks. Fasting lipid profiles and biochemical markers of bone formation (bone-specific alkaline phosphatase) and resorption (N-telopeptides and C-terminal propeptide of type 1 collagen) were measured at baseline, 6 and 12 weeks. RESULTS: Plasma low density lipoprotein-cholesterol concentration fell 7%, 39% (p < 0.01 vs baseline) and 47% (p < 0.01 vs baseline) after 12 weeks of treatment with placebo, simvastatin 20 mg and 40 mg, respectively. At baseline, bone marker concentrations were similar in the three treatment groups. At 6 and 12 weeks, bone marker concentrations were not different from baseline, and no significant differences in bone marker concentrations were observed between treatment groups at either 6 or 12 weeks. CONCLUSION: Among osteopenic women, treatment with simvastatin for 12 weeks did not affect markers of bone formation or resorption

    Anthocyanin management in fruits by fertilization

    Get PDF
    Anthocyanins are water-soluble vacuolar plant pigments that are mainly synthesized in epidermal layers and the flesh of fruits such as apples, cherries, grapes, and other berries. Because of their attractive red to purple coloration and their health-promoting potential, anthocyanins are significant determinants for the quality and market value of fruits and fruit-derived products. In crops, anthocyanin accumulation in leaves can be caused by nutrient deficiency which is usually ascribed to insufficient nitrogen or phosphorus fertilization. However, it is a little-known fact that the plant’s nutrient status also impacts anthocyanin synthesis in fruits. Hence, strategic nutrient supply can be a powerful tool to modify the anthocyanin content and consequently the quality and market value of important agricultural commodities. Here we summarize the current knowledge of the influence of plant nutrients on anthocyanin synthesis in fruits of major global market value and discuss the underlying cellular processes that integrate nutrient signaling with fruit anthocyanin formation. It is highlighted that fertilization that is finely tuned in amount and timing has the potential to positively influence the fruit quality by regulating anthocyanin levels. We outline new approaches to enrich plant based foods with health-promoting anthocyanins

    Differential Effects of Pravastatin and Simvastatin on the Growth of Tumor Cells from Different Organ Sites

    Get PDF
    3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) inhibitors, commonly known as statins, may possess cancer preventive and therapeutic properties. Statins are effective suppressors of cholesterol synthesis with a well-established risk-benefit ratio in cardiovascular disease prevention. Mechanistically, targeting HMGCR activity primarily influences cholesterol biosynthesis and prenylation of signaling proteins. Pravastatin is a hydrophilic statin that is selectively taken up by a sodium-independent organic anion transporter protein-1B1 (OATP1B1) exclusively expressed in liver. Simvastatin is a hydrophobic statin that enters cells by other mechanisms. Poorly-differentiated and well-differentiated cancer cell lines were selected from various tissues and examined for their response to these two statins. Simvastatin inhibited the growth of most tumor cell lines more effectively than pravastatin in a dose dependent manner. Poorly-differentiated cancer cells were generally more responsive to simvastatin than well-differentiated cancer cells, and the levels of HMGCR expression did not consistently correlate with response to statin treatment. Pravastatin had a significant effect on normal hepatocytes due to facilitated uptake and a lesser effect on prostate PC3 and colon Caco-2 cancer cells since the OATP1B1 mRNA and protein were only found in the normal liver and hepatocytes. The inhibition of cell growth was accompanied by distinct alterations in mitochondrial networks and dramatic changes in cellular morphology related to cofilin regulation and loss of p-caveolin. Both statins, hydrophilic pravastatin and hypdrophobic simvastatin caused redistribution of OATP1B1 and HMGCR to perinuclear sites. In conclusion, the specific chemical properties of different classes of statins dictate mechanistic properties which may be relevant when evaluating biological responses to statins

    Regional transport and metabolism of roivacaine and its CYP3A4 metabolite PPX in human intestine

    No full text
    The major aim of this study was to investigate the CYP3A4 metabolism and polarized transport of ropivacaine and its metabolite 2',6'-pipecoloxylidide (PPX) in tissue specimens from the human small and large intestine. Ropivacaine has been shown to be effective in the treatment of ulcerative colitis in human colon. This study was conducted using a modified Ussing-chamber technique with specimens from jejunum, ileum and colon collected from 11 patients. The local kinetics of ropivacaine and PPX were assessed from their concentration-time profiles in mucosal and serosal compartments. The permeability (P-app) in the absorptive direction for both ropivacaine and PPX increased regionally in the order jejunum <ileum<colon. Ropivacaine was not found to be subjected to any carrier-mediated intestinal efflux. However, the CYP3A4 metabolite left the human enterocyte in a polarized manner and both the extent of CYP3A4 metabolism of ropivacaine and the extrusion of its metabolite to the mucosal chamber were more efficient in jejunum than in ileum. P-glycoprotein was probably not involved in the metabolite extrusion. No other metabolite than PPX was found. This in-vitro study with human intestinal tissues provides new mechanistic insights into regional transport and metabolism of drugs
    • …
    corecore