78 research outputs found

    Regulation and Function of Runx2 During Chondrogenic and Osteogenic Differentiation: a Dissertation

    Get PDF
    Members of the Runx family of transcription factors play essential roles in the differentiation and development of several organ systems. Here we address the contribution of the osteoblast-related Runx gene, Runx2, to the osteogenic and chondrogenic differentiation of mesenchymal stem cells. Using a transgenic mouse model, we observe Runx2 transcription through one of its two known promoters (designated P1 in pre-cartilaginous mesenchymal condensations as early as E9.5. Runx2 gene activity is later repressed at the onset of cartilage formation, both in vivo and in vitro, necessitating examination of the regulation and function of Runx2 in mesenchymal stem cells. We demonstrate that Runx2 gene activity is repressed by the direct interaction of the homeodomain transcription factor Nkx3.2 with the proximal Runx2 P1 promoter. This repression was found to be required for the progression of BMP-induced chondrogenesis, thereby identifying Runx2 as a modulator of BMP activity in the chondrogenic as well as osteogenic differentiation program. To further understand the regulation of the Runx2 P1 promoter and to determine the contribution of P1-derived gene product, Runx2 Type II, to the formation of mineralized tissue, we have generated a Runx2 Type II-LacZ gene replacement mouse model in which the initial coding sequences and splice donor sites of the Type II isoform are replaced with the LacZ reporter gene. Activity of the endogenous P1 promoter can therefore be monitored by β-galactosidase production. Analysis of Runx2 Type II-LacZ mice demonstrates that the P1 promoter is transcriptionally most active in mature osteoblasts, but its product, Runx2 Type II is dispensable for embryonic skeletal formation. Lastly, we examine the link between growth control and osteogenic differentiation by tissue-specific deletion of the Mdm2 proto-oncogene in developing skeletal tissues of the mouse embryo. Loss of Mdm2 results in impaired bone formation, with skeletal elements exhibiting lower bone mineral content and higher porosity. Ex vivo cultures of calvarial osteoprogenitor cells exhibit severely decreased osteoblastogenesis and bone nodule formation accompanied by a failure to activate Runx2 gene activity. These findings suggest that Mdm2 is required for inhibition of p53 activity that ultimately allows for post-confluent proliferation and induction of Runx2 during maturation of the osteogenic phenotype. Taken together, our findings suggest that Runx2 modulates the commitment of progenitor cells to the osteogenic and chondrogenic lineages, and that Runx2 activity is inextricably linked to mechanisms that control cellular proliferation

    Mouse Label-Retaining Cells are Molecularly and Functionally Distinct From Reserve Intestinal Stem Cells

    Get PDF
    BACKGROUND & AIMS: Intestinal homeostasis and regeneration after injury are controlled by 2 different types of cells: slow cycling, injury-resistant reserve intestinal stem cells (ISCs) and actively proliferative ISCs. Putative reserve ISCs have been identified using a variety of methods, including CreER insertions at Hopx or Bmi1 loci in mice and DNA label retention. Label-retaining cells (LRCs) include dormant stem cells in several tissues; in the intestine, LRCs appear to share some properties with reserve ISCs, which can be marked by reporter alleles. We investigated the relationships between these populations. METHODS: Studies were performed in Lgr5-EGFP-IRESCreERT2, Bmi1-CreERT2, Hopx-CreERT2, and TRE-H2BGFP::Hopx-CreERT2::lox-stop-lox-tdTomato mice. Intestinal epithelial cell populations were purified; we compared reporter allele-marked reserve ISCs and several LRC populations (marked by H2B-GFP retention) using histologic flow cytometry and functional and single-cell gene expression assays. RESULTS: LRCs were dynamic and their cellular composition changed with time. Short-term LRCs had properties of secretory progenitor cells undergoing commitment to the Paneth or enteroendocrine lineages, while retaining some stem cell activity. Long-term LRCs lost stem cell activity and were a homogenous population of terminally differentiated Paneth cells. Reserve ISCs marked with HopxCreER were primarily quiescent (in G0), with inactive Wnt signaling and robust stem cell activity. In contrast, most LRCs were in G1 arrest and expressed genes that are regulated by the Wnt pathway or are in the secretory lineage. CONCLUSIONS: LRCs are molecularly and functionally distinct from reporter-marked reserve ISCs. This information provides an important basis for future studies of relationships among ISC populations

    A system for genome-wide histone variant dynamics in ES cells reveals dynamic MacroH2A2 replacement at promoters

    Get PDF
    Dynamic exchange of a subset of nucleosomes in vivo plays important roles in epigenetic inheritance of chromatin states, chromatin insulator function, chromosome folding, and the maintenance of the pluripotent state of embryonic stem cells. Here, we extend a pulse-chase strategy for carrying out genome-wide measurements of histone dynamics to several histone variants in murine embryonic stem cells and somatic tissues, recapitulating expected characteristics of the well characterized H3.3 histone variant. We extended this system to the less-studied MacroH2A2 variant, commonly described as a repressive histone variant whose accumulation in chromatin is thought to fix the epigenetic state of differentiated cells. Unexpectedly, we found that while large intergenic blocks of MacroH2A2 were stably associated with the genome, promoter-associated peaks of MacroH2A2 exhibited relatively rapid exchange dynamics in ES cells, particularly at highly-transcribed genes. Upon differentiation to embryonic fibroblasts, MacroH2A2 was gained primarily in additional long, stably associated blocks across gene-poor regions, while overall turnover at promoters was greatly dampened. Our results reveal unanticipated dynamic behavior of the MacroH2A2 variant in pluripotent cells, and provide a resource for future studies of tissue-specific histone dynamics in vivo

    Branched actin networks are assembled on microtubules by adenomatous polyposis coli for targeted membrane protrusion

    Get PDF
    Cell migration is driven by pushing and pulling activities of the actin cytoskeleton, but migration directionality is largely controlled by microtubules. This function of microtubules is especially critical for neuron navigation. However, the underlying mechanisms are poorly understood. Here we show that branched actin filament networks, the main pushing machinery in cells, grow directly from microtubule tips toward the leading edge in growth cones of hippocampal neurons. Adenomatous polyposis coli (APC), a protein with both tumor suppressor and cytoskeletal functions, concentrates at the microtubule-branched network interface, whereas APC knockdown nearly eliminates branched actin in growth cones and prevents growth cone recovery after repellent-induced collapse. Conversely, encounters of dynamic APC-positive microtubule tips with the cell edge induce local actin-rich protrusions. Together, we reveal a novel mechanism of cell navigation involving APC-dependent assembly of branched actin networks on microtubule tips

    Enhancing a Wnt-Telomere Feedback Loop Restores Intestinal Stem Cell Function in a Human Organotypic Model of Dyskeratosis Congenita

    Get PDF
    Patients with dyskeratosis congenita (DC) suffer from stem cell failure in highly proliferative tissues, including the intestinal epithelium. Few therapeutic options exist for this disorder, and patients are treated primarily with bone marrow transplantation to restore hematopoietic function. Here, we generate isogenic DC patient and disease allele-corrected intestinal tissue using clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated gene correction in induced pluripotent stem cells and directed differentiation. We show that DC tissue has suboptimal Wnt pathway activity causing intestinal stem cell failure and that enhanced expression of the telomere-capping protein TRF2, a Wnt target gene, can alleviate DC phenotypes. Treatment with the clinically relevant Wnt agonists LiCl or CHIR99021 restored TRF2 expression and reversed gastrointestinal DC phenotypes, including organoid formation in vitro, and maturation of intestinal tissue and xenografted organoids in vivo. Thus, the isogenic DC cell model provides a platform for therapeutic discovery and identifies Wnt modulation as a potential strategy for treatment of DC patients

    Alpha-Amino-Beta-Carboxy-Muconate-Semialdehyde Decarboxylase Controls Dietary Niacin Requirements for NAD+ Synthesis

    Get PDF
    NAD+ is essential for redox reactions in energy metabolism and necessary for DNA repair and epigenetic modification. Humans require sufficient amounts of dietary niacin (nicotinic acid, nicotinamide, and nicotinamide riboside) for adequate NAD+ synthesis. In contrast, mice easily generate sufficient NAD+ solely from tryptophan through the kynurenine pathway. We show that transgenic mice with inducible expression of human alpha-amino-beta-carboxy-muconate-semialdehyde decarboxylase (ACMSD) become niacin dependent similar to humans when ACMSD expression is high. On niacin-free diets, these acquired niacin dependency (ANDY) mice developed reversible, mild-to-severe NAD+ deficiency, depending on the nutrient composition of the diet. NAD deficiency in mice contributed to behavioral and health changes that are reminiscent of human niacin deficiency. This study shows that ACMSD is a key regulator of mammalian dietary niacin requirements and NAD+ metabolism and that the ANDY mouse represents a versatile platform for investigating pathologies linked to low NAD+ levels in aging and neurodegenerative diseases

    Derivation of Pre-X Inactivation Human Embryonic Stem Cells under Physiological Oxygen Concentrations

    Get PDF
    The presence of two active X chromosomes (XaXa) is a hallmark of the ground state of pluripotency specific to murine embryonic stem cells (ESCs). Human ESCs (hESCs) invariably exhibit signs of X chromosome inactivation (XCI) and are considered developmentally more advanced than their murine counterparts. We describe the establishment of XaXa hESCs derived under physiological oxygen concentrations. Using these cell lines, we demonstrate that (1) differentiation of hESCs induces random XCI in a manner similar to murine ESCs, (2) chronic exposure to atmospheric oxygen is sufficient to induce irreversible XCI with minor changes of the transcriptome, (3) the Xa exhibits heavy methylation of the XIST promoter region, and (4) XCI is associated with demethylation and transcriptional activation of XIST along with H3K27-me3 deposition across the Xi. These findings indicate that the human blastocyst contains pre-X-inactivation cells and that this state is preserved in vitro through culture under physiological oxygen.Susan WhiteheadHillel and Liliana Bachrac
    corecore