60 research outputs found

    Changes in the zein composition of protein bodies during maize endosperm development.

    No full text
    Zeins, the seed storage proteins of maize, are synthesized during endosperm development by membrane-bound polyribosomes and transported into the lumen of the endoplasmic reticulum, where they assemble into protein bodies. To better understand the distribution of the various zeins throughout the endosperm, and within protein bodies, we used immunolocalization techniques with light and electron microscopy to study endosperm tissue at 14 days and 18 days after pollination. Protein bodies increase in size with distance from the aleurone layer of the developing endosperm; this reflects a process of cell maturation. The protein bodies within the subaleurone cell layer are the smallest and contain little or no alpha-zein; beta-zein and gamma-zein are distributed throughout these small protein bodies. The protein bodies in cells farther away from the aleurone layer are progressively larger, and immunostaining for alpha-zein occurs over locules in the central region of these protein bodies. In the interior of the largest protein bodies, the locules of alpha-zein are fused. Concomitant with the appearance of alpha-zein in the central regions of the protein bodies, most of the beta- and gamma-zeins become peripheral. These observations are consistent with a model in which specific zeins interact to assemble the storage proteins into a protein body

    Ovalization: a new technique for measuring elastic deformation of pavements

    No full text
    Translated from Bull. Liaison Labo. Ponts Chausees (1979) v. 102(Jul-Aug) p. 59-71SIGLELD:5828.4F(M--27914) / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Modelling the size and composition of fruit, grain and seed by process-based simulation models

    No full text
    International audienceUnderstanding what determines the size and composition of fruit, grain and seed in response to the environment and genotype is challenging, as these traits result from several linked processes controlled at different levels of organization, from the subcellular to the crop level, with subtle interactions occurring at or between the levels of organization. Process-based simulation models (PBSMs) implement algorithms to simulate metabolic and biophysical aspects of cell, tissue and organ behaviour. In this review, fruit, grain and seed PBSMs describing the main phases of growth, development and storage metabolism are discussed. From this concurrent work, it is possible to identify generic storage organ processes which can be modelled similarly for fruit, grain and seed. Spatial heterogeneity at the tissue and whole-plant level is found to be a key consideration in modelling the effects of the environment and genotype on fruit, grain and seed end-use value. In the future, PBSMs may well become the main link between studies at the molecular and whole-plant levels. To bridge this phenotype-to-genotype gap, future models need to remain plastic without becoming overparameterized
    corecore