690 research outputs found

    Binary jumps in continuum. II. Non-equilibrium process and a Vlasov-type scaling limit

    Full text link
    Let Γ\Gamma denote the space of all locally finite subsets (configurations) in Rd\mathbb R^d. A stochastic dynamics of binary jumps in continuum is a Markov process on Γ\Gamma in which pairs of particles simultaneously hop over Rd\mathbb R^d. We discuss a non-equilibrium dynamics of binary jumps. We prove the existence of an evolution of correlation functions on a finite time interval. We also show that a Vlasov-type mesoscopic scaling for such a dynamics leads to a generalized Boltzmann non-linear equation for the particle density

    The second law, Maxwell's daemon and work derivable from quantum heat engines

    Full text link
    With a class of quantum heat engines which consists of two-energy-eigenstate systems undergoing, respectively, quantum adiabatic processes and energy exchanges with heat baths at different stages of a cycle, we are able to clarify some important aspects of the second law of thermodynamics. The quantum heat engines also offer a practical way, as an alternative to Szilard's engine, to physically realise Maxwell's daemon. While respecting the second law on the average, they are also capable of extracting more work from the heat baths than is otherwise possible in thermal equilibrium

    Vlasov scaling for the Glauber dynamics in continuum

    Full text link
    We consider Vlasov-type scaling for the Glauber dynamics in continuum with a positive integrable potential, and construct rescaled and limiting evolutions of correlation functions. Convergence to the limiting evolution for the positive density system in infinite volume is shown. Chaos preservation property of this evolution gives a possibility to derive a non-linear Vlasov-type equation for the particle density of the limiting system.Comment: 32 page

    Universal correlations of trapped one-dimensional impenetrable bosons

    Full text link
    We calculate the asymptotic behaviour of the one body density matrix of one-dimensional impenetrable bosons in finite size geometries. Our approach is based on a modification of the Replica Method from the theory of disordered systems. We obtain explicit expressions for oscillating terms, similar to fermionic Friedel oscillations. These terms are universal and originate from the strong short-range correlations between bosons in one dimension.Comment: 18 pages, 3 figures. Published versio

    Bath generated work extraction and inversion-free gain in two-level systems

    Full text link
    The spin-boson model, often used in NMR and ESR physics, quantum optics and spintronics, is considered in a solvable limit to model a spin one-half particle interacting with a bosonic thermal bath. By applying external pulses to a non-equilibrium initial state of the spin, work can be extracted from the thermalized bath. It occurs on the timescale \T_2 inherent to transversal (`quantum') fluctuations. The work (partly) arises from heat given off by the surrounding bath, while the spin entropy remains constant during a pulse. This presents a violation of the Clausius inequality and the Thomson formulation of the second law (cycles cost work) for the two-level system. Starting from a fully disordered state, coherence can be induced by employing the bath. Due to this, a gain from a positive-temperature (inversion-free) two-level system is shown to be possible.Comment: 4 pages revte

    Absence of Edge Localized Moments in the Doped Spin-Peierls System CuGe1−x_{1-x}Six_{x}O3_3

    Full text link
    We report the observation of nuclear quadrupole resonance (NQR) of Cu from the sites near the doping center in the spin-Peierls system CuGe1−x_{1-x}Six_{x}O3_3. The signal appears as the satellites in the Cu NQR spectrum, and has a suppressed nuclear spin-lattice relaxation rate indicative of a singlet correlation rather than an enhanced magnetic correlation near the doping center. Signal loss of Cu nuclei with no neighboring Si is also observed. We conclude from these observations that the doping-induced moments are not in the vicinity of the doping center but rather away from it.Comment: 4 pages, 4 figures, accepted for publication in Phys. Rev. Let

    Gravitational lensing: a unique probe of dark matter and dark energy

    Get PDF
    I review the development of gravitational lensing as a powerful tool of the observational cosmologist. After the historic eclipse expedition organized by Arthur Eddington and Frank Dyson, the subject lay observationally dormant for 60 years. However, subsequent progress has been astonishingly rapid, especially in the past decade, so that gravitational lensing now holds the key to unravelling the two most profound mysteries of our Universe—the nature and distribution of dark matter, and the origin of the puzzling cosmic acceleration first identified in the late 1990s. In this non-specialist review, I focus on the unusual history and achievements of gravitational lensing and its future observational prospects

    Longitudinal patterns in an Arkansas River Valley stream: an Application of the River Continuum Concept

    Get PDF
    The River Continuum Concept (RCC) provides the framework for studying how lotic ecosystems vary from headwater streams to large rivers. The RCC was developed in streams in eastern deciduous forests of North America, but watershed characteristics and land uses differ across ecoregions, presenting unique opportunities to study how predictions of the RCC may differ across regions. Additionally, RCC predictions may vary due to the influence of fishes, but few studies have used fish taxa as a metric for evaluating predictions of the RCC. Our goal was to determine if RCC predictions for stream orders 1 through 5 were supported by primary producer, macroinvertebrate, and fish communities in Cadron Creek of the Arkansas River Valley. We sampled chlorophyll a, macroinvertebrates, and fishes at five stream reaches across a gradient of watershed size. Contrary to RCC predictions, chlorophyll a did not increase in concentration with catchment size. As the RCC predicts, fish and macroinvertebrate diversity increased with catchment size. Shredding and collecting macroinvertebrate taxa supported RCC predictions, respectively decreasing and increasing in composition as catchment area increased. Herbivorous and predaceous fish did not follow RCC predictions; however, surface-water column feeding fish were abundant at all sites as predicted. We hypothesize some predictions of the RCC were not supported in headwater reaches of this system due to regional differences in watershed characteristics and altered resource availability due to land use surrounding sampling sites

    Exact Dynamical Correlation Functions of Calogero-Sutherland Model and One-Dimensional Fractional Statistics

    Full text link
    One-dimensional model of non-relativistic particles with inverse-square interaction potential known as Calogero-Sutherland Model (CSM) is shown to possess fractional statistics. Using the theory of Jack symmetric polynomial the exact dynamical density-density correlation function and the one-particle Green's function (hole propagator) at any rational interaction coupling constant λ=p/q\lambda = p/q are obtained and used to show clear evidences of the fractional statistics. Motifs representing the eigenstates of the model are also constructed and used to reveal the fractional {\it exclusion} statistics (in the sense of Haldane's ``Generalized Pauli Exclusion Principle''). This model is also endowed with a natural {\it exchange } statistics (1D analog of 2D braiding statistics) compatible with the {\it exclusion} statistics. (Submitted to PRL on April 18, 1994)Comment: Revtex 11 pages, IASSNS-HEP-94/27 (April 18, 1994

    Correlation functions and momentum distribution of one-dimensional Bose systems

    Full text link
    The ground-state correlation properties of a one-dimensional Bose system described by the Lieb-Liniger Hamiltonian are investigated by using exact quantum Monte Carlo techniques. The pair distribution function, static structure factor, one-body density matrix and momentum distribution of a homogeneous system are calculated for different values of the gas parameter ranging from the Tonks-Girardeau to the mean-field regime. Results for the momentum distribution of a harmonically trapped gas in configurations relevant to experiments are also presented.Comment: 4 pages, 5 figure
    • 

    corecore