With a class of quantum heat engines which consists of two-energy-eigenstate
systems undergoing, respectively, quantum adiabatic processes and energy
exchanges with heat baths at different stages of a cycle, we are able to
clarify some important aspects of the second law of thermodynamics. The quantum
heat engines also offer a practical way, as an alternative to Szilard's engine,
to physically realise Maxwell's daemon. While respecting the second law on the
average, they are also capable of extracting more work from the heat baths than
is otherwise possible in thermal equilibrium