222 research outputs found
Neurotoxicité des pesticides : quel impact sur les maladies neurodégénératives ?
Several epidemiological studies suggest that pesticides could lead to neurodegenerative diseases such as Parkinson\u27s and Alzheimer\u27s diseases. Among pesticides, insecticides appear more neurotoxic than others but the neurotoxic mechanisms leading to adverse health effects remain unclear. The currently used pesticides such as rotenone and paraquat could disrupt mitochondrial bioenergetic function, reactive oxygen metabolism, redox function and promote alpha-synuclein aggregation. In addition, recent studies demonstrate that genetic susceptibility to Parkinson\u27s disease could monitor pesticide susceptibility, as demonstrated for polymorphisms in pesticide metabolizing enzymes that are involved in organophosphorus sensitivity
Les neuropathies optiques héréditaires : du signe clinique au diagnostic
Inherited optic atrophy must be considered when working up any optic nerve involvement and any systemic disease with signs of optic atrophy, even with a negative family history. There are two classical forms: dominant optic atrophy, characterized by insidious, bilateral, slowly progressive visual loss and temporal disc pallor, and Leber\u27s optic atrophy, characterized by acute loss of central vision followed by the same event in the fellow eye within a few weeks to months, with disc hyperemia in the acute phase. Family history is critical for diagnosis. In the absence of family history, the clinician must rule out an identifiable acquired cause, i.e. toxic, inflammatory, perinatal injury, traumatic or tumoral, with orbital and brain imaging (MRI). Recessive optic atrophies are more rare and more severe and occur as part of multisystemic disorders, particularly Wolfram syndrome (diabetes mellitus, diabetes insipidus, and hearing loss). Effective treatments are limited; alcohol and smoking should be avoided. A cyclosporine trial (taken immediately upon visual loss in the first eye) is in progress in Leber\u27s optic atrophy to prevent involvement of the fellow eye
Mitochondrial fusion is frequent in skeletal muscle and supports excitation-contraction coupling
Genetic targeting experiments indicate a fundamental role for mitochondrial fusion proteins in mammalian physiology. However, owing to the multiple functions of fusion proteins, their related phenotypes are not necessarily caused by altered mitochondrial fusion. Perhaps the biggest mystery is presented by skeletal muscle, where mostly globular-shaped mitochondria are densely packed into the narrow intermyofilamental space, limiting the interorganellar interactions. We show here that mitochondria form local networks and regularly undergo fusion events to share matrix content in skeletal muscle fibers. However, fusion events are less frequent and more stable in the fibers than in nondifferentiated myoblasts. Complementation among muscle mitochondria was suppressed by both in vivo genetic perturbations and chronic alcohol consumption that cause myopathy. An Mfn1-dependent pathway is revealed whereby fusion inhibition weakens the metabolic reserve of mitochondria to cause dysregulation of calcium oscillations during prolonged stimulation. Thus, fusion dynamically connects skeletal muscle mitochondria and its prolonged loss jeopardizes bioenergetics and excitation-contraction coupling, providing a potential pathomechanism contributing to myopathies.
Alteration of Extracellular Nucleotide Metabolism in Pseudoxanthoma Elasticum
Pseudoxanthoma elasticum (PXE) is a rare genetic condition primarily caused by hepatic ABCC6 transporter dysfunction. Most clinical manifestations of PXE are due to premature calcification of elastic fibers. However, the vascular impact of PXE is pleiotropic and remains ill defined. ABCC6 expression has recently been associated with cellular nucleotide export. We studied the impact of ABCC6 deficiency on blood levels of adenosine triphosphate and related metabolites and on soluble nucleotidase activities in PXE patients and Abcc6 mice. In addition, we investigated the expression of genes encoding ectocellular purinergic signaling proteins in mouse liver and aorta. Plasma adenosine triphosphate and pyrophosphate levels were significantly reduced in PXE patients and in Abcc6 mice, whereas adenosine concentration was not modified. Moreover, 5\u27-nucleotidase/CD73 activity was increased in the serum of PXE patients and Abcc6 mice. Consistent with alterations of purinergic signaling, the expression of genes involved in purine and phosphate transport/metabolism was dramatically modified in Abcc6 mouse aorta, with much less impact on the liver. ABCC6 deficiency causes impaired vascular homeostasis and tissue perfusion. Our findings suggest that these alterations are linked to changes in extracellular nucleotide metabolism that are remote from the liver. This opens new perspectives for the understanding of PXE pathophysiology
Remote Ischemic Conditioning Influences Mitochondrial Dynamics
Remote ischemic preconditioning (RIPC) has emerged as an attractive strategy to protect the heart against ischemia-reperfusion (I/R) injury. The mechanisms by which remote ischemic conditioning (RIC) is protective are to date unknown, yet a well-accepted theory holds that the mitochondria play a central role. Mitochondria are dynamic organelles that undergo fusion and fission. Interventions that decrease mitochondrial fission or increase mitochondrial fusion have been associated with reduced I/R injury. However, whether RIPC influences mitochondrial dynamics or not has yet to be ascertained.We sought to determine the role played by mitochondrial dynamics in RIPC-induced cardioprotection. Male adult rats exposed in vivo to myocardial I/R were assigned to one of two groups, either undergoing 40 min of myocardial ischemia followed by 120 min of reperfusion (MI group) or four 5-min cycles of limb ischemia interspersed by 5 min of limb reperfusion, immediately prior to myocardial ischemia and 120 min of reperfusion (MI+RIPC group). After reperfusion, infarct size was assessed and myocardial tissue was analyzed by Western blot and electron microscopy. RIPC induced smaller infarct size (-28%), increased mitochondrial fusion protein OPA1, and preserved mitochondrial morphology. These findings suggest that mitochondrial dynamics play a role in the mechanisms of RIPC-induced cardioprotection
Metabolomics and Lipidomics Profiling of a Combined Mitochondrial Plus Endoplasmic Reticulum Fraction of Human Fibroblasts: A Robust Tool for Clinical Studies
Mitochondria and endoplasmic reticulum (ER) are physically and functionally connected. This close interaction, via mitochondria-associated membranes, is increasingly explored and supports the importance of studying these two organelles as a whole. Metabolomics and lipidomics are powerful approaches for the exploration of metabolic pathways that may be useful to provide deeper information on these organelles\u27 functions, dysfunctions, and interactions. We developed a quick and simple experimental procedure for the purification of a mitochondria-ER fraction from human fibroblasts. We applied combined metabolomics and lipidomics analyses by mass spectrometry with excellent reproducibility. Seventy-two metabolites and 418 complex lipids were detected with a mean coefficient of variation around 12%, among which many were specific to the mitochondrial metabolism. Thus this strategy based on robust mitochondria-ER extraction and "omics" combination will be useful for investigating the pathophysiology of complex diseases
In vivo time-lapse imaging of mitochondria in healthy and diseased peripheral myelin sheath
The myelin sheath that covers a large amount of neurons is critical for their homeostasis, and myelinating glia mitochondria have recently been shown to be essential for neuron survival. However morphological and physiological properties of these organelles remain elusive. Here we report a method to analyze mitochondrial dynamics and morphology in myelinating Schwann cells of living mice using viral transduction and time-lapse multiphoton microscopy. We describe the distribution, shape, size and dynamics of mitochondria in live cells. We also report mitochondrial alterations in Opa1(delTTAG) mutant mice cells at presymptomatic stages, suggesting that mitochondrial defects in myelin contribute to OPA1 related neuropathy and represent a biomarker for the disease
Molecular analysis of the TMPRSS3 gene in Moroccan families with non-syndromic hearing loss
Autosomal recessive non-syndromic hearing impairment (ARNSHI) is the most common type of inherited hearing impairment, accounting for approximately 80% of inherited prelingual hearing impairment. Hearing loss is noted to be both phenotypically and genetically heterogeneous. Mutations in the TMPRSS3 gene, which encodes a transmembrane serine protease, are known to cause autosomal recessive non-syndromic hearing impairment DFNB8/10. In order to elucidate if the TMPRSS3 gene is responsible for ARNSHI in 80 Moroccan families with non-syndromic hearing impairment, the gene was sequenced using DNA samples from these families. Nineteen TMPRSS3 variants were found, nine are located in the exons among which six are missense and three are synonymous. The 10 remaining variations are located in non-coding regions. Missense variants analysis show that they do not have a significant pathogenic effect on protein while pathogenicity of some variant remains under discussion. Thus we show that the TMPRSS3 gene is not a major contributor to non-syndromic deafness in the Moroccan population
OPA1 functions in mitochondria and dysfunctions in optic nerve
OPA1 is the major gene responsible for Dominant Optic Atrophy (DOA), a blinding disease that affects specifically the retinal ganglion cells (RGCs), which function consists in connecting the neuro-retina to the brain. OPA1 encodes an intra-mitochondrial dynamin, involved in inner membrane structures and ubiquitously expressed, raising the critical question of the origin of the disease pathophysiology. Here, we review the fundamental knowledge on OPA1 functions and regulations, highlighting their involvements in mitochondrial respiration, membrane dynamic and apoptosis. In light of these functions, we then describe the remarkable RGC mitochondrial network physiology and analyse data collected from animal models expressing OPA1 mutations. If, to date RGC mitochondria does not present any peculiarity at the molecular level, they represent possible targets of numerous assaults, like light, pressure, oxidative stress and energetic impairment, which jeopardize their function and survival, as observed in OPA1 mouse models. Although fascinating fields of investigation are still to be addressed on OPA1 functions and on DOA pathophysiology, we have reached a conspicuous state of knowledge with pertinent cell and animal models, from which therapeutic trials can be initiated and deeply evaluated
Adaptations in mitochondrial function parallel, but fail to rescue, the transition to severe hyperglycemia and hyperinsulinemia: a study in Zucker diabetic fatty rats.
Cross-sectional human studies have associated mitochondrial dysfunction to type 2 diabetes. We chose Zucker diabetic fatty (ZDF) rats as a model of progressive insulin resistance to examine whether intrinsic mitochondrial defects are required for development of type 2 diabetes. Muscle mitochondrial function was examined in 6-, 12-, and 19-week-old ZDF (fa/fa) and fa/+ control rats (n = 8-10 per group) using respirometry with pyruvate, glutamate, and palmitoyl-CoA as substrates. Six-week-old normoglycemic-hyperinsulinemic fa/fa rats had reduced mitochondrial fat oxidative capacity. Adenosine diphosphate (ADP)-driven state 3 and carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP)-stimulated state uncoupled (state u) respiration on palmitoyl-CoA were lower compared to controls (62.3 ± 9.5 vs. 119.1 ± 13.8 and 87.8 ± 13.3 vs. 141.9 ± 14.3 nmol O2/mg/min.). Pyruvate oxidation in 6-week-old fa/fa rats was similar to controls. Remarkably, reduced fat oxidative capacity in 6-week-old fa/fa rats was compensated for by an adaptive increase in intrinsic mitochondrial function at week 12, which could not be maintained toward week 19 (140.9 ± 11.2 and 57.7 ± 9.8 nmol O2/mg/min, weeks 12 and 19, respectively), whereas hyperglycemia had developed (13.5 ± 0.6 and 16.1 ± 0.3 mmol/l, weeks 12 and 19, respectively). This mitochondrial adaptation failed to rescue the progressive development of insulin resistance in fa/fa rats. The transition of prediabetes state toward advanced hyperglycemia and hyperinsulinemia was accompanied by a blunted increase in uncoupling protein-3 (UCP3). Thus, in ZDF rats insulin resistance develops progressively in the absence of mitochondrial dysfunction. In fact, improved mitochondrial capacity in hyperinsulinemic hyperglycemic rats does not rescue the progression toward advanced stages of insulin resistance
- …