32 research outputs found

    Optimisation of the slag formation in a blast furnace charged with 100% pellets

    No full text
    This work is based on experiences from industrial blast furnaces. Process irregularities when testing self-fluxed pellets Process disturbances when charging increased proportions of coarse pellets Laboratory tests to evaluate the effect of basic fluxes on the slag formation in the bosh and in the raceway have been carried out. Pilot scale tests have been performed to verify the effect of coarse pellets. The effect of reduction degree and the reduction behaviour on the slag formation and blast furnace performance have been evaluated It was found that decreased degree of reduction of pellets or lowly reduced core of coarse pellets decrease the melting temperature and increase the softening and melting temperature interval. Basic fluxes have a negative effect on the melting properties of the self-fluxed pellets and a positive effect on the melting properties of the olivine pellets. Basic fluxes have a positive effect on the melting properties of tuyere slags.Godkänd; 2001; 20070313 (ysko

    Co-injection of basic fluxes or BF flue dust with PC into a BF charged with 100% pellets : effects on slag formation and coal combustion

    No full text
    Based on 100% pellets operation at BF No. 3 at SSAB Tunnplåt in Luleå a new pellet with CaO/SiO2=1 was developed during early nineties. The pellet showed good results in metallurgical laboratory test but caused slag formation problems in the bosh. A high basicity slag was formed during interaction with basic fluxes and its melting point was increased when the slag was finally reduced. By injection of basic fluxes, the slag formation problems in the bosh can be avoided. Without a sinter plant, dusts have to be recycled in a cold bonded briquette. Injection of some of BF flue dust would improve the properties of the briquette and may be beneficial for the BF process. Based on top charging or tuyere-injection of basic fluxes and the injection of BF flue dust studies have been done. The studies carried out will clarify some phenomena of slag formation and the effect of co- injection on coal combustion in the blast furnace, including the effect of: 1) basic fluxes on slag formation in the blast furnace, if they are top- charged; 2) basic fluxes on slag formation in the blast furnace, if they are tuyere injected; 3) chemical composition and metallurgical properties of pellet and fluxes on slag formation; 4) reduction conditions on (reduction temperature, reducing gas composition) on bosh slag formation; 5 co- injection of BOF slag or BF flue dust on coal combustion efficiency and BF performance. From the results, it can be concluded that the interaction between pellets and fluxes starts when softening and melting starts in the cohesive layer. By choosing fluxes of a high melting point the dissolution of them in the bosh slag can be delayed and the excessive basicity of the bosh slag can be limited. A basic flux with a low melting point will easily dissolve into the bosh slag causing its basicity to increase, which is beneficial to S refining when acid pellets are used. The formation of a bosh slag of excessive basicity (which causes BF operation disturbances, because its high melting point, increases further during reduction) can be avoided by tuyere injection of basic fluxes with the coal. The positive effect is greatest when a fluxed pellet of basicity B21 and with a high Fe content is used as ferrous burden. In this case, the slag amount can be significantly decreased. BOF slag has suitable high-temperature properties for use as a basic flux in combination with e.g., olivine pellets. It has a low softening and melting temperature, does not shrink, is slowly reduced in the BF shaft and its properties are almost unaffected by the partial reduction occurring in the shaft of the BF. BOF slag absorbs a low content of alkalies, which causes volume increase at elevated temperatures, when the basicity is still high. The results indicate that co-injection of BOF slag or BF flue dust with PC has positive effects on the BF operation. The injection of BOF slag decreases the Si content in HM by an increased basicity of the slag formed during combustion leading to a decreased activity of SiO2 in the slag and by an increased FeO content in the tuyere slag that will be reduced by SiFe in the metal at the tuyere level, if the SiFe is initially high. The consumption of reducing agents can be reduced because of a decreased Si content in HM and a decreased slag amount. The permeability is improved by prohibiting the formation of a shell at the raceway end because of improved melting properties of tuyere slag caused by an increased basicity and FeO content, consumption of coal and coke fines by FeO and improved radial transport of tuyere slag. The injection of BOF slag improves the bosh slag because an excessive basicity caused by top-charged fluxes added for neutralisation of coal and coke ashes and non-uniform slag formation caused by uneven distribution of top-charged fluxes are avoided. The productivity increases because of the possibility to decrease the slag amount. The injection of BOF slag can be done without negative effects on combustion efficiency by using very finely ground BOF slag and because of improved total consumption of coal and coke fines by direct reduction in the coke bed. The injection of BF flue dust decreases the Si content in HM by an increased FeO content of the tuyere slag that will be reduced by SiFe in the metal at the tuyere level, if the SiFe is initially high. The consumption of coal and coke is decreased because of a high of C content in BF flue dust and the decreased Si content in HM. The permeability is improved by prohibiting the formation of a shell at the raceway end because of consumption of coal and coke fines by FeO and improved melting properties of tuyere slag promoting the radial transport of the tuyere slag. The injection of BF flue dust can be done without negative effects on the total consumption of coal and coke fines by direct reduction in the coke bed. Injected BF flue dust supplies oxygen for combustion, but because of endothermic reactions as reduction of hematite and calcination of limestone occurring in the BF flue dust at the same temperatures as release and disintegration of VM, it will have a negative effect on the combustion of HV coal. SSAB Luleå and SSAB Oxelösund have started up projects aiming to make tuyere- injection of BF flue dust part of the standard BF operation.Godkänd; 2004; 20070416 (ysko

    Experiences of Bio-Coal Applications in the Blast Furnace Process—Opportunities and Limitations

    No full text
    Metal production, and especially iron ore-based steel production, is characterized by high fossil CO2 emissions due of the use of coal and coke in the blast furnace. Steel companies around the world are striving to reduce the CO2 emissions in different ways, e.g., by use of hydrogen in the blast furnace or by production of iron via direct reduction. To partially replace fossil coal and coke with climate neutral bio-coal products that are adapted for use in the metal industry, e.g., at the blast furnace, is a real and important opportunity to significantly lower the climate impact in a short-term perspective. Top-charging of bio-coal directly to the blast furnace is difficult due to its low strength but can be facilitated if bio-coal is added as an ingredient in coke or to the mix when producing residue briquettes. Bio-coal can also be injected into the lower part of the blast furnace and thereby replace a substantial part of the injected pulverized coal. Based on research work within Swerim, where the authors have been involved, this paper will describe the opportunities and limitations of using bio-coal as a replacement for fossil coal as part of coke, as a constituent in residue briquettes, or as replacement of part of the injected pulverized coal. Results from several projects studying these opportunities via technical scale, as well as pilot and industrial scale experiments and modelling will be presented

    The Characterization of Residues Related to the Roasting– Leaching–Electrowinning Zinc Production Route for Further Metal Extraction

    No full text
    Super-hot acid leach residue is generated during zinc production in the roasting–leaching–electrowinning route, where both primary and secondary resources are used as feed material. This residue may contain valuable metals, such as lead, zinc, and iron, as well as precious metals, such as gold and silver. Four materials, namely super-hot acid leach residue, a residue formed when super-hot acid leach residue is selectively leached for lead with triethylenetetramine, as well as flotation concentrate, and flotation tailings formed in a selective silver flotation process with super-hot acid leach residue as the feed material were characterized to obtain a deeper understanding of possible further metal extraction. These four materials were characterized for chemical composition, mineralogy, and mineral distribution via chemical analyses, X-ray diffraction, and energy-dispersive scanning electron microscopy, respectively. The scanning electron microscope images showed that the materials have large variations in particle size distribution and composition. The results showed that the main lead phase in super-hot acid leach residue is lead sulfate, whereas it is mostly converted to lead sulfide during the selective lead leaching of the super-hot acid leach residue. The remaining lead sulfate is found in a solid solution with barium sulfate. Extracting lead from super-hot acid leach residue via triethylenetetramine leaching resulted in increased concentrations of gold and silver by 41% and 42%, respectively. The identified silver phases in super-hot acid leach residue may correspond to silver sulfide, silver chloride, and elementary silver, where silver sulfide was the most commonly occurring silver phase. After leaching this selectively for lead with triethylenetetramine, similar silver phases were identified, but silver sulfide and silver chloride occurred to a similar extent. Additionally, silver copper sulfide was detected. The presence of different silver phases might pose a challenge to reaching high silver recovery during leaching as the optimum leaching conditions differ somewhat. Furthermore, elemental sulfur, with a tendency to coat gold and silver particle surfaces, which is indicated to be present in all materials except the silver flotation tailings, may hinder metal extraction.Validerad;2024;Nivå 2;2024-02-05 (joosat);Funder: EIT Raw Materials, co-funded by European Union (19164); Boliden Mineral AB;Full text license: CC BY</p

    Coke reactivity under blast furnace condition and in the CSR/CRI test

    No full text
    The present work aims to study the high-temperature strength of coke. Mechanisms of disintegration were evaluated using basket samples charged into LKAB's experimental blast furnace prior to quenching and dissection. Coke charged into basket samples were analysed with CSR/CRI tests and compared with treated coke from the blast furnace. Results from tumbling tests, chemical analyses of coarse and fine material, as well as light optical microscopy studies of original and treated coke have been combined and evaluated.The results indicate a correlation between the ash composition and the CSR values. Differences in the texture of the coke were noted with light optical microscopy, and a significant change in the coke texture during the CSR/CRI test conditions was found. The results suggest that the main reaction between coke and CO2 took place in isotropic areas, which was especially pronounced in coke with a low CSR. Signs of degradation were apparent throughout the coke pieces that have undergone CSR/CRI testing, but were less observable in coke reacted in the blast furnace. The results indicate that reaction with CO2 is generally limited by the chemical reaction rate in the CSR/CRI test, while in the blast furnace the reaction is limited by the diffusion rate. Coke degradation is therefore mostly restricted to the coke surface in the blast furnace.Godkänd; 2008; 20080822 (ysko

    Materials Properties and Liquid Flow in the Hearth of the Experimental Blast Furnace

    No full text
    The materials&#8217; properties in the hearth of the blast furnace are very crucial for the hearth conditions. In this study, a number of coke, slag, metal, and aggregate samples were collected from the hearth of the LKAB&#8217;s experimental blast furnace (EBF). Subsequently, the coke, slag, and metal samples were chemically analyzed by X-ray fluorescence (XRF) or optical emission spectrometer (OES); the aggregate samples were analyzed by scanning electron microscope combined with energy-dispersive X-ray spectroscopy (SEM/EDS). The possible flow field of the liquid in the EBF hearth before quenching is depicted according to Cu tracers in the metal samples. Selected elements in the coke, slag, and metal were mapped for two sampling layers in the hearth, as well as in one cross section of the flow field. The results indicate that there exists an area beneath, and in front of, tuyere 3, where the flow resistance of the liquid was high. The high flow resistance contributed to the formation of a cold zone in the close-to-wall region and at the bottom of the EBF hearth. The temperature distribution in the EBF hearth has significant impacts on the chemical properties of the materials in different positions of the EBF hearth, as well as on the radial and vertical distributions of certain elements/components

    Effect of simulated PCI rate on olivine pellet reduction

    No full text
    Reduction behaviour and textures formed during laboratory simulated BF tests with olivine pellets are presented and discussed. Test design is based on gas and temperature profiles during operation at a high and a low pulverized coal injection (PCI) rate with a low-volatile coal in the LKAB experimental blast furnace (EBF). Texture differences, introduced prior to a reduction degree of 40 percent, are observed in the iron oxide in the pellet core and in the Femet pellet periphery. A simulated high PCI rate decreases the reduction time of the pellets. The olivine pellets investigated are well suited for blast furnace operation at different PCI rates and accordingly different production rates.Godkänd; 2006; 20070416 (ysko

    The effect of BOF slag and BF flue dust on coal combustion efficiency

    No full text
    Injection into a BF of BOF slag to improve the slag formation and of BF flue dust to improve the recycling of in-plant fines has previously been tested. The effects on the PC combustion efficiency at different conditions, when these materials are co-injected with coal, have so far not been tested. Combustion efficiencies at varied temperature, O2 enrichment, amount of PC, amount of added BOF slag or BF flue dust and particle size of the added material are measured in a fixed bed and a blowpipe model. The established facts that an increased temperature and O2 enrichment or a decreased amount of coal increase the combustion efficiency are valid also when BOF slag or BF flue dust are added to the coal. By adjusting the combustion conditions, a decreased combustion efficiency can be counteracted, when a second material is co-injected with coal. The effect of BOF slag addition on coal combustion efficiency measured in the blowpipe model is in-significant, if a fine fraction is used. The combustion efficiency is higher in the fixed bed compared with that in the blowpipe model. The addition of BF flue dust increases the combustion efficiency in the fixed bedValiderad; 2004; 20100212 (andbra

    Understanding of Blast Furnace Performance with Biomass Introduction

    No full text
    The blast furnace still dominates the production and supply of metallic units for steelmaking. Coke and coal used in the blast furnace contribute substantially to CO2 emissions from the steel sector. Therefore, blast furnace operators are making great efforts to lower the fossil CO2 emissions and transition to fossil-free steelmaking. In previous studies the use of pre-treated biomass has been indicated to have great potential to significantly lower fossil CO2 emissions. Even negative CO2 emission can be achieved if biomass is used together with carbon capture and storage. Blast furnace conditions will change at substantial inputs of biomass but can be defined through model calculations when using a model calibrated with actual operational data to define the key blast furnace performance parameters. To understand the effect, the modelling results for different biomass cases are evaluated in detail and the overall performance is visualised in Rist- and carbon direct reduction rate (CDRR) diagrams. In this study injection of torrefied biomass or charcoal, top charging of charcoal as well as the use of a combination of both methods are evaluated in model calculations. It was found that significant impact on the blast furnace conditions by the injection of 142 kg/tHM of torrefied biomass could be counteracted by also top-charging 30 kg/tHM of charcoal. With combined use of the latter methods, CO2-emissions can be potentially reduced by up to 34% with moderate change in blast furnace conditions and limited investments
    corecore