20 research outputs found

    Experimental study of a SINIS detector response time at 350 GHz signal frequency

    Get PDF
    Response time constant of a SINIS bolometer integrated in an annular ring antenna was measured at a bath temperature of 100 mK. Samples comprising superconducting aluminium electrodes and normal-metal Al/Fe strip connected to electrodes via tunnel junctions were fabricated on oxidized Si substrate using shadow evaporation. The bolometer was illuminated by a fast black-body radiation source through a band-pass filter centered at 350 GHz with a passband of 7 GHz. Radiation source is a thin NiCr film on sapphire substrate. For rectangular 10\uf7100 μs current pulse the radiation front edge was rather sharp due to low thermal capacitance of NiCr film and low thermal conductivity of substrate at temperatures in the range 1-4 K. The rise time of the response was ∼1-10 μs. This time presumably is limited by technical reasons: high dynamic resistance of series array of bolometers and capacitance of a long twisted pair wiring from SINIS bolometer to a room-Temperature amplifier

    Non-Thermal Absorption and Quantum Efficiency of SINIS Bolometer

    Get PDF
    We study mechanisms of absorption in two essentially different types of superconductor-insulator-normal metal-insulator-superconductor (SINIS) bolometers with absorber directly placed on Si wafer and with absorber suspended above the substrate. The figure of merit for quantum photon absorption is quantum efficiency equal to the number of detected electrons for one photon. The efficiency of absorption is dramatically dependent on phonon losses to substrate and electrodes, and electron energy losses to electrodes through tunnel junctions. The maximum quantum efficiency can approach n = hf/kT = 160 at f = 350 GHz T = 0.1 K, and current responsivity dI/dP = e/kT in quantum gain bolometer case, contrary to photon counter mode with quantum efficiency of n = 1 and responsivity dI/dP = e/hf. In experiments, we approach intrinsic quantum efficiency up to n = 80 electrons per photon in bolometer with suspended absorber, contrary to quantum efficiency of about one for absorber on the substrate. In the case of suspended Cu and Pd absorber, Kapitsa resistance protect from power leak to Al electrodes

    Electron and hole injection barriers between silicon substrate and RF magnetron sputtered In2O3 : Er films

    Get PDF
    In2O3 : Er films have been synthesized on silicon substrates by RF magnetron sputter deposition. The currents through the synthesized metal/oxide/semiconductor (MOS) structures (Si/In2O3 : Er/In-contact) have been measured for n and p type conductivity silicon substrates and described within the model of majority carrier thermoemission through the barrier, with bias voltage correction to the silicon potential drop. The electron and hole injection barriers between the silicon substrate and the film have been found to be 0.14 and 0.3 eV, respectively, by measuring the temperature dependence of the forward current at a low sub-barrier bias. The resulting low hole injection barrier is accounted for by the presence of defect state density spreading from the valence band edge into the In2O3 : Er band gap to form a hole conduction channel. The presence of defect state density in the In2O3 : Er band gap is confirmed by photoluminescence data in the respective energy range 1.55–3.0 eV. The band structure of the Si/In2O3 : Er heterojunction has been analyzed. The energy gap between the In2O3 : Er conduction band electrons and the band gap conduction channel holes has been estimated to be 1.56 eV

    Superconducting Receivers for Space, Balloon, and Ground-Based Sub-Terahertz Radio Telescopes

    Get PDF
    We give a review of both our own original scientific results of the development of superconducting receivers for sub-terahertz astronomy and the main leading concepts of the global instrumentation. The analysis of current astronomical problems, the results of microwave astroclimate research, and the development of equipment for sub-terahertz radio astronomy studies justify the need and feasibility of a major infrastructure project in Russia to create a sub-terahertz telescope, as well as to enhance the implementation of the ongoing Millimetron and Suffa projects. The following results are discussed: i) superconducting coherent receivers and broadband subterahertz detectors for space, balloon, and ground-based radio telescopes have been developed and tested; ii) ultrasensitive receiving systems based on tunnel structures such as superconductor-insulator-superconductor (SIS) and superconductor-insulator-normal metal-insulator-superconductor (SINIS) have been created, fabricated, and examined; iii) a receiving array based on SINIS detectors and microwave readout system for such structures has been implemented; iv) methods for manufacturing high-quality tunnel structures Nb/AlOx/Nb and Nb/AlN/NbN based on niobium films with a current density of up to 30 kA/cm(2) have been developed. Receivers operated at 200 to 950 GHz and having a noise temperature only a factor of 2 to 5 higher than the quantum limit have been created and tested

    Барьеры для инжекции электронов и дырок из подложки кремния в ВЧ-магнетронно напыленные пленки In2O3 : Er

    Get PDF
    The In2O3 : Er films were deposited on Si substrates by the RF magnetron sputtering technique. For the Si substrates of both n- and p-type the current through the MOS-structure (Si/In2O3 : Er/In-contact) was described by the thermionic emission of the main currents over the barrier, with the correction of the applied voltage into the partial voltage drop in silicon. By the temperature dependence measurements of the forward currents at small under-barrier biases the barriers for the current injection from Si into the films were found equal to the 0.14 eV and 0.3 eV for the electrons and holes accordingly. The obtained small barrier for the holes is described by the presence of the defect state density. It tails from the valence band maximum into the In2O3 : Er band gap and provides there the conduction channel for holes. The defect state density in the In2O3 : Er band gap is proved by the PL data in the respective energy range 1.55–3 eV. The band analysis for the hetero-structure Si/In2O3 : Er is performed. It gives the energy gap between the electrons in the In2O3 : Er conduction band and the holes in the band gap channel equal to the 1.56 eV.Пленки In2O3 : Er были напылены на подложки кремния с помощью ВЧ-магнетронного распыления-осаждения. Для подложек кремния как n-, так и p-типа проводимости токи через полученные МОП-структуры (Si/In2O3 : Er/In-контакт) были описаны в рамках модели термоэмиссии основных носителей через барьер с коррекцией приложенного напряжения на потенциал, падающий в кремнии. С помощью измерения температурной зависимости прямых токов при малом, подбарьерном смещении были найдены барьеры для инжекции электронов и дырок из кремния в пленки, равные 0,14 и 0,3 эВ, соответственно. Полученный невысокий барьер для дырок объясняется наличием плотности дефектных состояний, которые простираются от края зоны валентности в запрещенную зону In2O3 : Er и создают там канал проводимости для дырок. Наличие плотности дефектных состояний в запрещенной зоне In2O3 : Er подтверждается данными фотолюминесценции в соответствующем интервале энергий 1,55—3,0 эВ. Выполнен анализ зонной структура гетероперехода Si/In2O3 : Er. На его основе установлен энергетический интервал между электронами в зоне проводимости In2O3 : Er и дырками в канале проводимости в запрещенной зоне, равный 1,56 эВ.

    X-ray Tomography using Thin Scintillator Films

    No full text
    2-14 μm thin CsI:Tl scintillation screens with high spatial resolution were prepared by the thermal deposition method for low energy X-ray imaging applications. The spatial resolution was measured as a function of the film thickness. It was proposed that the spatial resolution of the prepared conversion screens can be significantly improved by an additional deposition of a carbon layer

    Electrical and optical properties of a bolometer with a suspended absorber and tunneling-current thermometers

    Get PDF
    We have developed a bolometer with a suspended normal-metal absorber connected to superconducting leads via tunneling barriers. Such an absorber has reduced heat losses to the substrate, which greatly increases the responsivity of the bolometer to over 109 V/W at 75 mK when measured by dc Joule heating of the absorber. For high-frequency experiments, the bolometers have been integrated in planar twin-slot and log-periodic antennas. At 300 GHz and 100 mK, the bolometer demonstrates the voltage and current response of 3 × 108 V/W and 1.1 × 104 A/W, respectively, corresponding to the quantum efficiency of ∼15 electrons per photon. An effective thermalization of electrons in the absorber favors the high quantum efficiency. We also report on how the in-plane- and transverse magnetic fields influence the device characteristics

    Electrical and optical properties of a bolometer with a suspended absorber and tunneling-current thermometers

    No full text
    We have developed a bolometer with a suspended normal-metal absorber connected to superconducting leads via tunneling barriers. Such an absorber has reduced heat losses to the substrate, which greatly increases the responsivity of the bolometer to over 109 V/W at 75 mK when measured by dc Joule heating of the absorber. For high-frequency experiments, the bolometers have been integrated in planar twin-slot and log-periodic antennas. At 300 GHz and 100 mK, the bolometer demonstrates the voltage and current response of 3 × 108 V/W and 1.1 × 104 A/W, respectively, corresponding to the quantum efficiency of ∼15 electrons per photon. An effective thermalization of electrons in the absorber favors the high quantum efficiency. We also report on how the in-plane- and transverse magnetic fields influence the device characteristics

    Electrical and optical properties of a bolometer with a suspended absorber and tunneling-current thermometers

    Get PDF
    We have developed a bolometer with a suspended normal-metal absorber connected to superconducting leads via tunneling barriers. Such an absorber has reduced heat losses to the substrate, which greatly increases the responsivity of the bolometer to over 10(9) V/W at 75 mK when measured by dc Joule heating of the absorber. For high-frequency experiments, the bolometers have been integrated in planar twin-slot and log-periodic antennas. At 300GHz and 100 mK, the bolometer demonstrates the voltage and current response of 3 x 10(8) V/W and 1.1 x 10(4) A/W, respectively, corresponding to the quantum efficiency of similar to 15 electrons per photon. An effective thermalization of electrons in the absorber favors the high quantum efficiency. We also report on how the in-plane-and transverse magnetic fields influence the device characteristics
    corecore