8 research outputs found

    Direct Path Interference Suppression Requirements for Bistatic Backscatter Communication System

    Get PDF
    The ambient backscatter communication (AmBC) system utilizes the existing ambient RF signals present in the atmosphere for backscattering the signal. One of the challenges for AmBC system is the interference at the receiver module caused by the direct path signal from the ambient source. The purpose of this paper is to study the coverage aspects of the bi-static backscatter communication system in a typical urban environment at sub-1GHz frequencies using simulations in MATLAB. For the simulation, 3rd generation partnership project (3GPP) urban microcellular and international telecommunication union (ITU) device-to-device (D2D) propagation models are used. Moreover, the dynamic range i.e., the difference in the received power level of the direct path and the backscatter path is investigated. For correctly decoding the backscatter signal at the reader, the target value set for the dynamic range is less than 30 dB. This paper studies the importance of direct path interference suppression for the successful deployment of a bi-static backscatter communication system.acceptedVersionPeer reviewe

    Arguments for One Radio Access Network (OneRAN) mobile infrastructure

    Get PDF
    Funding Information: Special thanks to Keysight Technologies for providing NEMO Analyze license. Publisher Copyright: © 2022, The Author(s).The frequency spectrum is a scarce resource, and is owned and regulated by the state to ensure its efficient and fair utilization. All over the world, a large number of Mobile Network Operators (MNOs) are already involved in either active or passive Radio Access Network (RAN) sharing to maximize cost savings. The aim of this article is to challenge the ownership of individual operator’s infrastructure and present technical arguments for One Radio Access Network (OneRAN) approach for deploying a cellular network. The enormous increase in data traffic and regulatory requirements concerning public safety communications provide the basis for migrating to OneRAN infrastructure. The OneRAN approach provides an opportunity to gain technological benefits and helps in meeting the requirements of critical communication. OneRAN targets to maximize the savings on capital and operational expenses. The main focus of this work is outdoor wide-area coverage i.e., outdoor users in rural areas and on highways, as it is assumedthat indoor service provision in the future requires a dedicated indoor solution. For the research work of this article, a measurement campaign was launched and different Key Performance Indicators(KPIs) of Long Term Evolution(LTE) technology for three commercial MNOs of Finland were measured over a 52 km highway from Iittala to Tampere city. The acquired results highlight the gain of OneRAN infrastructure as it enhanced the user quality of experience i.e., user throughput, especially of the critical cell border users, and improved the overall system performance economically. Finally, supportive arguments are presented for having a OneRAN infrastructure specifically over the highways.Peer reviewe

    Capacity Limitation of Small Cell Densification

    Get PDF
    Funding Information: ACKNOWLEDGEMENT This work was supported in part by Academy of Finland under the project ULTRA (No. 328215), and it is also in part supported by Aalto University and Tampere University. Publisher Copyright: © 2022 IEEE.Deployment of small cells is considered as an easy approach for adding capacity to the system. However, it is important to realize that in a non-noise limited system, each additional cell increases the interference in the system. The target of this paper is to show the capacity limitation of the cellular network with an increasing number of small cells in a network. Ultra-dense deployment of small cells implies a high probability of line of sight (LOS) transmission between the transmitter (TX) and receiver (RX). The LOS transmission helps in enhancing the received signal strength, whereas, on the other hand, the interference power significantly grows with small cell densification. This paper presents the analytical analysis of bad cell border area for one-, and two-dimensional grid of small cells. The lamp post solution for the small cell deployment along the street is studied through simulations. The acquired results show that the overall interference in the system and the bad signal to interference plus noise ratio (SINR) cell border area grows with cell densification. System capacity saturates and then starts to collapse as the capacity loss due to the additional cell interference becomes dominant over the gain of cell densification after the saturation point.Peer reviewe

    Assessment of coordinated multipoint transmission modes for indoor and outdoor users at 28 GHz in urban macrocellular environment

    No full text
    The aim of this article is to analyze and evaluate the performance of Coordinated Multipoint (CoMP) transmission approach at a frequency of 28 GHz using three dimensional ray tracing simulations in an urban macrocellular environment. The new performance metric introduced in this article is the relative power usage. Other performance metrics examined in this article are received power, the Signal to Interference plus Noise Ratio (SINR), user throughput, relative throughput gain, and the percentage of overlapping area with multiple cells. Indoor and outdoor users are separately analyzed for few key performance indicators. Different cases of coordinated multipoint transmission i.e. intra-node and inter-node coordination is analyzed. The post analysis of the acquired simulation data shows that the use of CoMP functionality is more beneficial for the cell edge users compared with the other users in terms of improving the user’s experience. The throughput gain as well as the transmission overhead of the CoMP approach increases with the increase in number CoMP ports. Inter-node CoMP is much more power efficient and beneficial in comparison with the intra-node CoMP case.Peer reviewe
    corecore