5,690 research outputs found

    Does a relativistic metric generalization of Newtonian gravity exist in 2+1 dimensions?

    Get PDF
    It is shown that, contrary to previous claims, a scalar tensor theory of Brans-Dicke type provides a relativistic generalization of Newtonian gravity in 2+1 dimensions. The theory is metric and test particles follow the space-time geodesics. The static isotropic solution is studied in vacuum and in regions filled with an incompressible perfect fluid. It is shown that the solutions can be consistently matched at the matter vacuum interface, and that the Newtonian behavior is recovered in the weak field regime.Comment: 6 pages, no figures, Revtex4. Some discussions on the physical nature of the interior solution and on the omega->infinity limit and some references added. Version to appear in Phys. Rev.

    The Two-Dimensional Analogue of General Relativity

    Full text link
    General Relativity in three or more dimensions can be obtained by taking the limit ω→∞\omega\rightarrow\infty in the Brans-Dicke theory. In two dimensions General Relativity is an unacceptable theory. We show that the two-dimensional closest analogue of General Relativity is a theory that also arises in the limit ω→∞\omega\rightarrow\infty of the two-dimensional Brans-Dicke theory.Comment: 8 pages, LaTeX, preprint DF/IST-17.9

    Collapsing shells of radiation in anti-de Sitter spacetimes and the hoop and cosmic censorship conjectures

    Get PDF
    Gravitational collapse of radiation in an anti-de Sitter background is studied. For the spherical case, the collapse proceeds in much the same way as in the Minkowski background, i.e., massless naked singularities may form for a highly inhomogeneous collapse, violating the cosmic censorship, but not the hoop conjecture. The toroidal, cylindrical and planar collapses can be treated together. In these cases no naked singularity ever forms, in accordance with the cosmic censorship. However, since the collapse proceeds to form toroidal, cylindrical or planar black holes, the hoop conjecture in an anti-de Sitter spacetime is violated.Comment: 4 pages, Revtex Journal: to appear in Physical Review

    Conformal entropy from horizon states: Solodukhin's method for spherical, toroidal, and hyperbolic black holes in D-dimensional anti-de Sitter spacetimes

    Full text link
    A calculation of the entropy of static, electrically charged, black holes with spherical, toroidal, and hyperbolic compact and oriented horizons, in D spacetime dimensions, is performed. These black holes live in an anti-de Sitter spacetime, i.e., a spacetime with negative cosmological constant. To find the entropy, the approach developed by Solodukhin is followed. The method consists in a redefinition of the variables in the metric, by considering the radial coordinate as a scalar field. Then one performs a 2+(D-2) dimensional reduction, where the (D-2) dimensions are in the angular coordinates, obtaining a 2-dimensional effective scalar field theory. This theory is a conformal theory in an infinitesimally small vicinity of the horizon. The corresponding conformal symmetry will then have conserved charges, associated with its infinitesimal conformal generators, which will generate a classical Poisson algebra of the Virasoro type. Shifting the charges and replacing Poisson brackets by commutators, one recovers the usual form of the Virasoro algebra, obtaining thus the level zero conserved charge eigenvalue L_0, and a nonzero central charge c. The entropy is then obtained via the Cardy formula.Comment: 21 page

    The Three-Dimensional BTZ Black Hole as a Cylindrical System in Four-Dimensional General Relativity

    Full text link
    It is shown how to transform the three dimensional BTZ black hole into a four dimensional cylindrical black hole (i.e., black string) in general relativity. This process is identical to the transformation of a point particle in three dimensions into a straight cosmic string in four dimensions.Comment: Latex, 9 page

    Visual Cortex Plasticity Following Peripheral Damage To The Visual System: fMRI Evidence

    Get PDF
    Over the last two decades, functional magnetic resonance imaging (fMRI) has become a powerful research method to investigate cortical visual plasticity. Abnormal fMRI response patterns have been occasionally detected in the visually deprived cortex of patients with bilateral retinal diseases. Controversy remains whether these observations indicate structural reorganization of the visual cortex or unmasking of previously silent cortico-cortical connections. In optic nerve diseases, there is weak evidence showing that early visual cortex seems to lack reorganization, while higher-order visual areas undergo plastic changes which may contribute to optimise visual function. There is however accumulating imaging evidence demonstrating trans-synaptic degeneration of the visual cortex in patients with disease of the anterior visual pathways. This may preclude the use of restorative treatments in these patients. Here, we review and update the body of fMRI evidence on visual cortical plasticity.info:eu-repo/semantics/publishedVersio

    Thermodynamics of the two-dimensional black hole in the Teitelboim-Jackiw theory

    Full text link
    The two-dimensional theory of Teitelboim and Jackiw has constant and negative curvature. In spite of this, the theory admits a black hole solution with no singularities. In this work we study the thermodynamics of this black hole using York's formalism.Comment: 16 pages, Late

    Probing time orientability of spacetime

    Full text link
    In general relativity, cosmology and quantum field theory, spacetime is assumed to be an orientable manifold endowed with a Lorentz metric that makes it spatially and temporally orientable. The question as to whether the laws of physics require these orientability assumptions is ultimately of observational or experimental nature, or the answer might come from a fundamental theory of physics. The possibility that spacetime is time non-orientable lacks investigation, and so should not be dismissed straightaway. In this paper, we argue that it is possible to locally access a putative time non-orientability of Minkowski empty spacetime by physical effects involving quantum vacuum electromagnetic fluctuations. We set ourselves to study the influence of time non-orientability on the stochastic motions of a charged particle subject to these electromagnetic fluctuations in Minkowski spacetime equipped with a time non-orientable topology and with its time orientable counterpart. To this end, we introduce and derive analytic expressions for a statistical time orientability indicator. Then we show that it is possible to pinpoint the time non-orientable topology through an inversion pattern displayed by the corresponding orientability indicator, which is absent when the underlying manifold is time orientable.Comment: 21 pages, 3 figure

    Relativistic Static Thin Disks with Radial Stress Suport

    Full text link
    New solutions for static non-rotating thin disks of finite radius with nonzero radial stress are studied. A method to introduce either radial pressure or radial tension is presented. The method is based on the use of conformal transformations.Comment: 19 pages, LaTeX, 7 figures, submitted to Class. Quan. Gra

    Testing Born-Infeld electrodynamics in waveguides

    Get PDF
    Waveguides can be employed to test non-linear effects in electrodynamics. We solve Born-Infeld equations for TE waves in a rectangular waveguide. We show that the energy velocity acquires a dependence on the amplitude, and harmonic components appear as a consequence of the non-linear behavior.Comment: 3 pages. To appear in PR
    • …
    corecore